Ilya Grigoriev
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ilya Grigoriev.
Neuron | 2009
Jacek Jaworski; Lukas C. Kapitein; Susana Montenegro Gouveia; Bjorn Dortland; Phebe S. Wulf; Ilya Grigoriev; Paola Camera; Samantha A. Spangler; Paola Di Stefano; Jeroen Demmers; Harm J. Krugers; Paola Defilippi; Anna Akhmanova; Casper C. Hoogenraad
Dendritic spines are the major sites of excitatory synaptic input, and their morphological changes have been linked to learning and memory processes. Here, we report that growing microtubule plus ends decorated by the microtubule tip-tracking protein EB3 enter spines and can modulate spine morphology. We describe p140Cap/SNIP, a regulator of Src tyrosine kinase, as an EB3 interacting partner that is predominantly localized to spines and enriched in the postsynaptic density. Inhibition of microtubule dynamics, or knockdown of either EB3 or p140Cap, modulates spine shape via regulation of the actin cytoskeleton. Fluorescence recovery after photobleaching revealed that EB3-binding is required for p140Cap accumulation within spines. In addition, we found that p140Cap interacts with Src substrate and F-actin-binding protein cortactin. We propose that EB3-labeled growing microtubule ends regulate the localization of p140Cap, control cortactin function, and modulate actin dynamics within dendritic spines, thus linking dynamic microtubules to spine changes and synaptic plasticity.
Journal of Cell Biology | 2005
Yuko Mimori-Kiyosue; Ilya Grigoriev; Gideon Lansbergen; Hiroyuki Sasaki; Chiyuki Matsui; Fedor F. Severin; Niels Galjart; Frank Grosveld; Ivan A. Vorobjev; Shoichiro Tsukita; Anna Akhmanova
CLIP-associating protein (CLASP) 1 and CLASP2 are mammalian microtubule (MT) plus-end binding proteins, which associate with CLIP-170 and CLIP-115. Using RNA interference in HeLa cells, we show that the two CLASPs play redundant roles in regulating the density, length distribution and stability of interphase MTs. In HeLa cells, both CLASPs concentrate on the distal MT ends in a narrow region at the cell margin. CLASPs stabilize MTs by promoting pauses and restricting MT growth and shortening episodes to this peripheral cell region. We demonstrate that the middle part of CLASPs binds directly to EB1 and to MTs. Furthermore, we show that the association of CLASP2 with the cell cortex is MT independent and relies on its COOH-terminal domain. Both EB1- and cortex-binding domains of CLASP are required to promote MT stability. We propose that CLASPs can mediate interactions between MT plus ends and the cell cortex and act as local rescue factors, possibly through forming a complex with EB1 at MT tips.
Journal of Cell Biology | 2009
Yulia Komarova; Christian O. De Groot; Ilya Grigoriev; Susana Montenegro Gouveia; E. Laura Munteanu; Joseph M. Schober; Srinivas Honnappa; Rubén M. Buey; Casper C. Hoogenraad; Marileen Dogterom; Gary G. Borisy; Michel O. Steinmetz; Anna Akhmanova
End binding proteins (EBs) are highly conserved core components of microtubule plus-end tracking protein networks. Here we investigated the roles of the three mammalian EBs in controlling microtubule dynamics and analyzed the domains involved. Protein depletion and rescue experiments showed that EB1 and EB3, but not EB2, promote persistent microtubule growth by suppressing catastrophes. Furthermore, we demonstrated in vitro and in cells that the EB plus-end tracking behavior depends on the calponin homology domain but does not require dimer formation. In contrast, dimerization is necessary for the EB anti-catastrophe activity in cells; this explains why the EB1 dimerization domain, which disrupts native EB dimers, exhibits a dominant-negative effect. When microtubule dynamics is reconstituted with purified tubulin, EBs promote rather than inhibit catastrophes, suggesting that in cells EBs prevent catastrophes by counteracting other microtubule regulators. This probably occurs through their action on microtubule ends, because catastrophe suppression does not require the EB domains needed for binding to known EB partners.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Pankaj Dhonukshe; Ilya Grigoriev; Rainer Fischer; Motoki Tominaga; David G. Robinson; Jiří Hašek; Tomasz Paciorek; Jan Petrášek; Daniela Seifertová; Ricardo Tejos; Lee Meisel; Eva Zažímalová; Theodorus W. J. Gadella; York-Dieter Stierhof; Takashi Ueda; Kazuhiro Oiwa; Anna Akhmanova; Roland Brock; Anne Spang; Jiří Friml
Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this concept. However, despite the use of ATIs in plant research for many decades, the mechanism of ATI action has remained largely elusive. Using real-time live-cell microscopy, we show here that prominent ATIs such as 2,3,5-triiodobenzoic acid (TIBA) and 2-(1-pyrenoyl) benzoic acid (PBA) inhibit vesicle trafficking in plant, yeast, and mammalian cells. Effects on micropinocytosis, rab5-labeled endosomal motility at the periphery of HeLa cells and on fibroblast mobility indicate that ATIs influence actin cytoskeleton. Visualization of actin cytoskeleton dynamics in plants, yeast, and mammalian cells show that ATIs stabilize actin. Conversely, stabilizing actin by chemical or genetic means interferes with endocytosis, vesicle motility, auxin transport, and plant development, including auxin transport-dependent processes. Our results show that a class of ATIs act as actin stabilizers and advocate that actin-dependent trafficking of auxin transport components participates in the mechanism of auxin transport. These studies also provide an example of how the common eukaryotic process of actin-based vesicle motility can fulfill a plant-specific physiological role.
PLOS Biology | 2010
Daniël Splinter; Marvin E. Tanenbaum; Arne Lindqvist; Dick Jaarsma; Annette Flotho; Ka Lou Yu; Ilya Grigoriev; Dieuwke Engelsma; Elize D. Haasdijk; Nanda Keijzer; Jeroen Demmers; Maarten Fornerod; Frauke Melchior; Casper C. Hoogenraad; René H. Medema; Anna Akhmanova
Mammalian Bicaudal D2 is the missing molecular link between cytoplasmic motor proteins and the nucleus during nuclear positioning prior to the onset of mitosis.
Current Biology | 2012
Kai Jiang; Grischa Toedt; Susana Montenegro Gouveia; Norman E. Davey; Shasha Hua; Babet van der Vaart; Ilya Grigoriev; Jesper Larsen; Lotte B. Pedersen; Karel Bezstarosti; Mariana Lince-Faria; Jeroen Demmers; Michel O. Steinmetz; Toby J. Gibson; Anna Akhmanova
Microtubule plus-end tracking proteins (+TIPs) are structurally and functionally diverse factors that accumulate at the growing microtubule plus-ends, connect them to various cellular structures, and control microtubule dynamics [1, 2]. EB1 and its homologs are +TIPs that can autonomously recognize growing microtubule ends and recruit to them a variety of other proteins. Numerous +TIPs bind to end binding (EB) proteins through natively unstructured basic and serine-rich polypeptide regions containing a core SxIP motif (serine-any amino acid-isoleucine-proline) [3]. The SxIP consensus sequence is short, and the surrounding sequences show high variability, raising the possibility that undiscovered SxIP containing +TIPs are encoded in mammalian genomes. Here, we performed a proteome-wide search for mammalian SxIP-containing +TIPs by combining biochemical and bioinformatics approaches. We have identified a set of previously uncharacterized EB partners that have the capacity to accumulate at the growing microtubule ends, including protein kinases, a small GTPase, centriole-, membrane-, and actin-associated proteins. We show that one of the newly identified +TIPs, CEP104, interacts with CP110 and CEP97 at the centriole and is required for ciliogenesis. Our study reveals the complexity of the mammalian +TIP interactome and provides a basis for investigating the molecular crosstalk between microtubule ends and other cellular structures.
Current Biology | 2010
Susana Montenegro Gouveia; Kris Leslie; Lukas C. Kapitein; Rubén M. Buey; Ilya Grigoriev; Michael Wagenbach; Ihor Smal; Erik Meijering; Casper C. Hoogenraad; Linda Wordeman; Michel O. Steinmetz; Anna Akhmanova
The kinesin-13 family member mitotic centromere-associated kinesin (MCAK) is a potent microtubule depolymerase. Paradoxically, in cells it accumulates at the growing, rather than the shortening, microtubule plus ends. This plus-end tracking behavior requires the interaction between MCAK and members of the end-binding protein (EB) family, but the effect of EBs on the microtubule-destabilizing activity of MCAK and the functional significance of MCAK accumulation at the growing microtubule tips have so far remained elusive. Here, we dissect the functional interplay between MCAK and EB3 by reconstituting EB3-dependent MCAK activity on dynamic microtubules in vitro. Whereas MCAK alone efficiently blocks microtubule assembly, the addition of EB3 restores robust microtubule growth, an effect that is not dependent on the binding of MCAK to EB3. At the same time, EB3 targets MCAK to growing microtubule ends by increasing its association rate with microtubule tips, a process that requires direct interaction between the two proteins. This EB3-dependent microtubule plus-end accumulation does not affect the velocity of microtubule growth or shortening but enhances the capacity of MCAK to induce catastrophes. The combination of MCAK and EB3 thus promotes rapid switching between microtubule growth and shortening, which can be important for remodeling of the microtubule cytoskeleton.
Molecular Biology of the Cell | 2012
Daniël Splinter; David S. Razafsky; Max A. Schlager; Andrea Serra-Marques; Ilya Grigoriev; Jeroen Demmers; Nanda Keijzer; Kai-Lei Jiang; Ina Poser; Anthony A. Hyman; Casper C. Hoogenraad; Stephen J. King; Anna Akhmanova
This study dissects the recruitment of dynein and dynactin to cargo by a conserved motor adaptor BICD2. It is shown that dynein, dynactin, and BICD2 form a triple complex in vitro and in vivo. Investigation of the properties of this complex by direct visualization of dynein in live cells shows that BICD2-induced dynein transport requires LIS1.
Current Biology | 2011
Ilya Grigoriev; Ka Lou Yu; Emma Martinez-Sanchez; Andrea Serra-Marques; Ihor Smal; Erik Meijering; Jeroen Demmers; Johan Peränen; R. Jeroen Pasterkamp; Peter van der Sluijs; Casper C. Hoogenraad; Anna Akhmanova
Rab6 is a conserved small GTPase that localizes to the Golgi apparatus and cytoplasmic vesicles and controls transport and fusion of secretory carriers [1]. Another Rab implicated in trafficking from the trans-Golgi to the plasma membrane is Rab8 [2-5]. Here we show that Rab8A stably associates with exocytotic vesicles in a Rab6-dependent manner. Rab8A function is not needed for budding or motility of exocytotic carriers but is required for their docking and fusion. These processes also depend on the Rab6-interacting cortical factor ELKS [1], suggesting that Rab8A and ELKS act in the same pathway. We show that Rab8A and ELKS can be linked by MICAL3, a member of the MICAL family of flavoprotein monooxygenases [6]. Expression of a MICAL3 mutant with an inactive monooxygenase domain resulted in a strong accumulation of secretory vesicles that were docked at the cell cortex but failed to fuse with the plasma membrane, an effect that correlated with the strongly reduced mobility of MICAL3. We propose that the monooxygenase activity of MICAL3 is required to regulate its own turnover and the concomitant remodeling of vesicle-docking protein complexes in which it is engaged. Taken together, the results of our study illustrate cooperation of two Rab proteins in constitutive exocytosis and implicates a redox enzyme in this process.
The EMBO Journal | 2010
Max A. Schlager; Lukas C. Kapitein; Ilya Grigoriev; Grzegorz Burzynski; Phebe S. Wulf; Nanda Keijzer; Esther de Graaff; Mitsunori Fukuda; Iain T. Shepherd; Anna Akhmanova; Casper C. Hoogenraad
Membrane and secretory trafficking are essential for proper neuronal development. However, the molecular mechanisms that organize secretory trafficking are poorly understood. Here, we identify Bicaudal‐D‐related protein 1 (BICDR‐1) as an effector of the small GTPase Rab6 and key component of the molecular machinery that controls secretory vesicle transport in developing neurons. BICDR‐1 interacts with kinesin motor Kif1C, the dynein/dynactin retrograde motor complex, regulates the pericentrosomal localization of Rab6‐positive secretory vesicles and is required for neural development in zebrafish. BICDR‐1 expression is high during early neuronal development and strongly declines during neurite outgrowth. In young neurons, BICDR‐1 accumulates Rab6 secretory vesicles around the centrosome, restricts anterograde secretory transport and inhibits neuritogenesis. Later during development, BICDR‐1 expression is strongly reduced, which permits anterograde secretory transport required for neurite outgrowth. These results indicate an important role for BICDR‐1 as temporal regulator of secretory trafficking during the early phase of neuronal differentiation.