Ilya Kupenko
University of Bayreuth
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ilya Kupenko.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Marco Merlini; Wilson A. Crichton; Michael Hanfland; Mauro Gemmi; H. Müller; Ilya Kupenko; Leonid Dubrovinsky
Carbon-bearing solids, fluids, and melts in the Earths deep interior may play an important role in the long-term carbon cycle. Here we apply synchrotron X-ray single crystal micro-diffraction techniques to identify and characterize the high-pressure polymorphs of dolomite. Dolomite-II, observed above 17 GPa, is triclinic, and its structure is topologically related to CaCO3-II. It transforms above 35 GPa to dolomite-III, also triclinic, which features carbon in [3 + 1] coordination at the highest pressures investigated (60 GPa). The structure is therefore representative of an intermediate between the low-pressure carbonates and the predicted ultra-high pressure carbonates, with carbon in tetrahedral coordination. Dolomite-III does not decompose up to the melting point (2,600 K at 43 GPa) and its thermodynamic stability demonstrates that this complex phase can transport carbon to depths of at least up to 1,700 km. Dolomite-III, therefore, is a likely occurring phase in areas containing recycled crustal slabs, which are more oxidized and Ca-enriched than the primitive lower mantle. Indeed, these phases may play an important role as carbon carriers in the whole mantle carbon cycling. As such, they are expected to participate in the fundamental petrological processes which, through carbon-bearing fluids and carbonate melts, will return carbon back to the Earth’s surface.
Nature Communications | 2013
Vasily Potapkin; Catherine McCammon; Konstantin Glazyrin; A. Kantor; Ilya Kupenko; Clemens Prescher; Ryosuke Sinmyo; Gennady V. Smirnov; Aleksandr I. Chumakov; R. Rüffer; Leonid Dubrovinsky
Iron can adopt different spin states in the lower mantle. Previous studies indicate that the dominant lower-mantle phase, magnesium silicate perovskite (which contains at least half of its iron as Fe(3+)), undergoes a Fe(3+) high-spin to low-spin transition that has been suggested to cause seismic velocity anomalies and a drop in laboratory-measured electrical conductivity. Here we apply a new synchrotron-based method of Mössbauer spectroscopy and show that Fe(3+) remains in the high-spin state in lower-mantle perovskite at conditions throughout the lower mantle. Electrical conductivity measurements show no conductivity drop in samples with high Fe(3+), suggesting that the conductivity drop observed previously on samples with high Fe(2+) is due to a transition of Fe(2+) to the intermediate-spin state. Correlation of transport and elastic properties of lower-mantle perovskite with electromagnetic and seismic data may provide a new probe of heterogeneity in the lower mantle.
Nature Communications | 2016
Elena Bykova; Leonid Dubrovinsky; Natalia Dubrovinskaia; Maxim Bykov; Catherine McCammon; Sergey V. Ovsyannikov; Hanns-Peter Liermann; Ilya Kupenko; Aleksandr I. Chumakov; R. Rüffer; Michael Hanfland; Vitali B. Prakapenka
Although chemically very simple, Fe2O3 is known to undergo a series of enigmatic structural, electronic and magnetic transformations at high pressures and high temperatures. So far, these transformations have neither been correctly described nor understood because of the lack of structural data. Here we report a systematic investigation of the behaviour of Fe2O3 at pressures over 100 GPa and temperatures above 2,500 K employing single crystal X-ray diffraction and synchrotron Mössbauer source spectroscopy. Crystal chemical analysis of structures presented here and known Fe(II, III) oxides shows their fundamental relationships and that they can be described by the homologous series nFeO·mFe2O3. Decomposition of Fe2O3 and Fe3O4 observed at pressures above 60 GPa and temperatures of 2,000 K leads to crystallization of unusual Fe5O7 and Fe25O32 phases with release of oxygen. Our findings suggest that mixed-valence iron oxides may play a significant role in oxygen cycling between earth reservoirs.
Nature Communications | 2016
Elena Bykova; Leonid Dubrovinsky; Natalia Dubrovinskaia; Maxim Bykov; Catherine McCammon; Sergey V. Ovsyannikov; Hanns-Peter Liermann; Ilya Kupenko; A. I. Chumakov; R. Rüffer; Michael Hanfland; Vitali B. Prakapenka; Bayreuth ; ESRF
Although chemically very simple, Fe2O3 is known to undergo a series of enigmatic structural, electronic and magnetic transformations at high pressures and high temperatures. So far, these transformations have neither been correctly described nor understood because of the lack of structural data. Here we report a systematic investigation of the behaviour of Fe2O3 at pressures over 100 GPa and temperatures above 2,500 K employing single crystal X-ray diffraction and synchrotron Mössbauer source spectroscopy. Crystal chemical analysis of structures presented here and known Fe(II, III) oxides shows their fundamental relationships and that they can be described by the homologous series nFeO·mFe2O3. Decomposition of Fe2O3 and Fe3O4 observed at pressures above 60 GPa and temperatures of 2,000 K leads to crystallization of unusual Fe5O7 and Fe25O32 phases with release of oxygen. Our findings suggest that mixed-valence iron oxides may play a significant role in oxygen cycling between earth reservoirs.
American Mineralogist | 2015
Valerio Cerantola; Catherine McCammon; Ilya Kupenko; I. Kantor; C. Marini; Max Wilke; Leyla Ismailova; Natalia Solopova; Aleksandr I. Chumakov; S. Pascarelli; Leonid Dubrovinsky
Abstract Fe-bearing carbonates have been proposed as possible candidate host minerals for carbon inside the Earth’s interior and hence their spectroscopic properties can provide constraints on the deep carbon cycle. Here we investigate high-pressure spin crossover in synthetic FeCO3 (siderite) using a combination of Mössbauer, Raman, and X-ray absorption near edge structure spectroscopy in diamond-anvil cells. These techniques sensitive to the short-range atomic environment show that at room temperature and under quasi-hydrostatic conditions, spin crossover in siderite takes place over a broad pressure range, between 40 and 47 GPa, in contrast to previous X-ray diffraction data that described the transition as a sharp volume collapse at approximately 43 GPa. Based on these observations we consider electron spin pairing in siderite to be a dynamic process, where Fe atoms can be either high spin or low spin in the crossover region. Mode Grüneisen parameters extracted from Raman spectra collected at pressures below and above spin crossover show a drastic change in stiffness of the Fe-O octahedra after the transition, where they become more compact and hence less compressible. Mössbauer experiments performed on siderite single crystals as well as powder samples demonstrate the effect of differential stress on the local structure of siderite Fe atoms in a diamond-anvil cell. Differences in quadrupole splitting values between powder and single crystals show that local distortions of the Fe site in powder samples cause spin crossover to start at higher pressure and broaden the spin crossover pressure range.
Review of Scientific Instruments | 2012
Ilya Kupenko; Leonid Dubrovinsky; Natalia Dubrovinskaia; Catherine McCammon; Konstantin Glazyrin; Elena Bykova; T. Boffa Ballaran; Ryosuke Sinmyo; Aleksandr I. Chumakov; Vasily Potapkin; A. Kantor; R. Rüffer; Michael Hanfland; Wilson A. Crichton; Marco Merlini
The diamond anvil cell (DAC) technique coupled with laser heating is a major method for studying materials statically at multimegabar pressures and at high temperatures. Recent progress in experimental techniques, especially in high-pressure single crystal X-ray diffraction, requires portable laser heating systems which are able to heat and move the DAC during data collection. We have developed a double-sided laser heating system for DACs which can be mounted within a rather small (~0.1 m(2)) area and has a weight of ~12 kg. The system is easily transferable between different in-house or synchrotron facilities and can be assembled and set up within a few hours. The system was successfully tested at the High Pressure Station of White Beam (ID09a) and Nuclear Resonance (ID18) beamlines of the European Synchrotron Radiation Facility. We demonstrate examples of application of the system to a single crystal X-ray diffraction investigation of (Mg(0.87),Fe(3+) (0.09),Fe(2+) (0.04))(Si(0.89),Al(0.11))O(3) perovskite (ID09a) and a Synchrotron Mössbauer Source (SMS) study of (Mg(0.8)Fe(0.2))O ferropericlase (ID18).
Proceedings of the National Academy of Sciences of the United States of America | 2015
Sylvain Petitgirard; Wim J. Malfait; Ryosuke Sinmyo; Ilya Kupenko; Louis Hennet; Dennis Harries; Thomas G. Dane; Manfred Burghammer; David C. Rubie
Significance A new technique has been developed to measure in situ the density of amorphous material composed of light elements under extreme conditions of pressure using the X-ray absorption method. At core–mantle boundary (CMB) pressure, the densities of MgSiO3 glass and melts are similar to the one of the crystalline bridgmanite, within uncertainty. Due to the affinity of iron oxide for silicate liquids, melting in the MgSiO3–FeSiO3 system will produce dense melts that could accumulate above the CMB, leading to the formation of a dense basal magma ocean in the early Earths mantle. One key for understanding the stratification in the deep mantle lies in the determination of the density and structure of matter at high pressures, as well as the density contrast between solid and liquid silicate phases. Indeed, the density contrast is the main control on the entrainment or settlement of matter and is of fundamental importance for understanding the past and present dynamic behavior of the deepest part of the Earth’s mantle. Here, we adapted the X-ray absorption method to the small dimensions of the diamond anvil cell, enabling density measurements of amorphous materials to unprecedented conditions of pressure. Our density data for MgSiO3 glass up to 127 GPa are considerably higher than those previously derived from Brillouin spectroscopy but validate recent ab initio molecular dynamics simulations. A fourth-order Birch–Murnaghan equation of state reproduces our experimental data over the entire pressure regime of the mantle. At the core–mantle boundary (CMB) pressure, the density of MgSiO3 glass is 5.48 ± 0.18 g/cm3, which is only 1.6% lower than that of MgSiO3 bridgmanite at 5.57 g/cm3, i.e., they are the same within the uncertainty. Taking into account the partitioning of iron into the melt, we conclude that melts are denser than the surrounding solid phases in the lowermost mantle and that melts will be trapped above the CMB.
High Pressure Research | 2013
Catherine McCammon; Konstantin Glazyrin; A. Kantor; I. Kantor; Ilya Kupenko; O. Narygina; Vasily Potapkin; Clemens Prescher; Ryosuke Sinmyo; A. I. Chumakov; R. Rüffer; I. Sergueev; Gennady V. Smirnov; Leonid Dubrovinsky
We present a review of our recent work concerning the spin state of Fe2+ and Fe3+ in iron magnesium aluminium silicate perovskite, the most abundant phase in the Earths interior. Experimental results obtained using Mössbauer spectroscopy (with a radioactive source and a Synchrotron Mössbauer Source) and nuclear forward scattering for a range of different sample compositions in both externally heated and laser-heated diamond anvil cells show clear trends in the variation of hyperfine parameters with pressure and temperature. These trends combined with reported total spin state measurements using X-ray emission spectroscopy on samples of similar composition support the conclusion that Fe2+ undergoes a high-spin to intermediate-spin transition near the top of the lower mantle and an intermediate-spin to low-spin transition near the bottom of the lower mantle. No spin transition is observed to occur in Fe3+ for samples with compositions relevant for the lower mantle.
Journal of Chemical Physics | 2012
Ilya Kupenko; Leonid Dubrovinsky; Vladimir Dmitriev; Natalia Dubrovinskaia
The effect of static compression up to 65 GPa at ambient temperature on ammonia borane, BH(3)NH(3), has been investigated using in situ Raman spectroscopy in a diamond anvil cells. Two phase transitions were observed at approximately 12 GPa and previously not reported transition at 27 GPa. It was demonstrated that ammonia borane behaves differently under compression at quasi-hydrostatic and non-hydrostatic conditions. The ability of BH(3)NH(3) to generate second harmonic of the laser light observed up to 130 GPa suggests that the non-centrosymmetric point group symmetry is preserved in the material up to very high pressures.
Nature Communications | 2017
Valerio Cerantola; Elena Bykova; Ilya Kupenko; Marco Merlini; Leyla Ismailova; Catherine McCammon; Maxim Bykov; A. I. Chumakov; Sylvain Petitgirard; Innokenty Kantor; Volodymyr Svitlyk; Jeroen Jacobs; Michael Hanfland; Mohamed Mezouar; Clemens Prescher; R. Rüffer; Vitali B. Prakapenka; Leonid Dubrovinsky
The presence of carbonates in inclusions in diamonds coming from depths exceeding 670 km are obvious evidence that carbonates exist in the Earth’s lower mantle. However, their range of stability, crystal structures and the thermodynamic conditions of the decarbonation processes remain poorly constrained. Here we investigate the behaviour of pure iron carbonate at pressures over 100 GPa and temperatures over 2,500 K using single-crystal X-ray diffraction and Mössbauer spectroscopy in laser-heated diamond anvil cells. On heating to temperatures of the Earth’s geotherm at pressures to ∼50 GPa FeCO3 partially dissociates to form various iron oxides. At higher pressures FeCO3 forms two new structures—tetrairon(III) orthocarbonate Fe43+C3O12, and diiron(II) diiron(III) tetracarbonate Fe22+Fe23+C4O13, both phases containing CO4 tetrahedra. Fe4C4O13 is stable at conditions along the entire geotherm to depths of at least 2,500 km, thus demonstrating that self-oxidation-reduction reactions can preserve carbonates in the Earth’s lower mantle.