Ilya Shamovsky
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ilya Shamovsky.
Nature | 2006
Ilya Shamovsky; Maxim V. Ivannikov; Eugene S. Kandel; David Gershon; Evgeny Nudler
The heat-shock transcription factor 1 (HSF1) has an important role in the heat-shock response in vertebrates by inducing the expression of heat-shock proteins (HSPs) and other cytoprotective proteins. HSF1 is present in unstressed cells in an inactive monomeric form and becomes activated by heat and other stress stimuli. HSF1 activation involves trimerization and acquisition of a site-specific DNA-binding activity, which is negatively regulated by interaction with certain HSPs. Here we show that HSF1 activation by heat shock is an active process that is mediated by a ribonucleoprotein complex containing translation elongation factor eEF1A and a previously unknown non-coding RNA that we term HSR1 (heat shock RNA-1). HSR1 is constitutively expressed in human and rodent cells and its homologues are functionally interchangeable. Both HSR1 and eEF1A are required for HSF1 activation in vitro; antisense oligonucleotides or short interfering (si)RNA against HSR1 impair the heat-shock response in vivo, rendering cells thermosensitive. The central role of HSR1 during heat shock implies that targeting this RNA could serve as a new therapeutic model for cancer, inflammation and other conditions associated with HSF1 deregulation.
Cell | 2013
Ivan Gusarov; Laurent Gautier; Olga Smolentseva; Ilya Shamovsky; Svetlana Eremina; A. S. Mironov; Evgeny Nudler
Nitric oxide (NO) is an important signaling molecule in multicellular organisms. Most animals produce NO from L-arginine via a family of dedicated enzymes known as NO synthases (NOSes). A rare exception is the roundworm Caenorhabditis elegans, which lacks its own NOS. However, in its natural environment, C. elegans feeds on Bacilli that possess functional NOS. Here, we demonstrate that bacterially derived NO enhances C. elegans longevity and stress resistance via a defined group of genes that function under the dual control of HSF-1 and DAF-16 transcription factors. Our work provides an example of interspecies signaling by a small molecule and illustrates the lifelong value of commensal bacteria to their host.
Cellular Microbiology | 2009
Xihui Shen; Simran Banga; Yancheng Liu; Li Xu; Ping Gao; Ilya Shamovsky; Evgeny Nudler; Zhao-Qing Luo
The Legionella pneumophila Dot/Icm type IV secretion system is essential for the biogenesis of a phagosome that supports bacterial multiplication, most likely via the functions of its protein substrates. Recent studies indicate that fundamental cellular processes, such as vesicle trafficking, stress response, autophagy and cell death, are modulated by these effectors. However, how each translocated protein contributes to the modulation of these pathways is largely unknown. In a screen to search substrates of the Dot/Icm transporter that can cause host cell death, we identified a gene whose product is lethal to yeast and mammalian cells. We demonstrate that this protein, called SidI, is a substrate of the Dot/Icm type IV protein transporter that targets the host protein translation process. Our results indicate that SidI specifically interacts with eEF1A and eEF1Bγ, two components of the eukaryotic protein translation elongation machinery and such interactions leads to inhibition of host protein synthesis. Furthermore, we have isolated two SidI substitution mutants that retain the target binding activity but have lost toxicity to eukaryotic cells, suggesting potential biochemical effect of SidI on eEF1A and eEF1Bγ. We also show that infection by L. pneumophila leads to eEF1A‐mediated activation of the heat shock regulatory protein HSF1 in a virulence‐dependent manner and deletion of sidI affects such activation. Moreover, similar response occurred in cells transiently transfected to express SidI. Thus, inhibition of host protein synthesis by specific effectors contributes to the induction of stress response in L. pneumophila‐infected cells.
Mechanisms of Ageing and Development | 2004
Ilya Shamovsky; David Gershon
An attenuated response to stress is characteristic of senescence. Heat shock (HS), a significant form of stress, is delayed and reduced in aging organisms. In the response to heat shock, heat shock factor 1 (HSF-1) is activated by trimerization of its monomeric subunits. This then initiates the transcription of a series of heat shock genes (hsp genes) that encode chaperone proteins protective against heat stress. Using a promoter binding electromobility shift assay (EMSA), we have found no activation of this transcription factor in the brains of old (36 months) rats in response to exposure to 41 degrees C for 1h while strong activation is elicited in young (6 months) animals. Since brains of young and old rats had approximately the same amount of HSF-1 subunits, we anticipated the presence of auxiliary regulatory factors essential for the activation of HSF-1 and the initiation of heat shock gene transcription. We describe three novel auxiliary factors--the proteins I-HSF [HSF inhibitor] and elongation factor-1 alpha (EF-1alpha) and a large non-coding RNA (HSR)--that participate in regulation and activation of HSF-1 in early stages of heat shock gene transcription. I-HSF inhibits trimerization of HSF-1 at normal temperatures. HSR and EF-1alpha form a complex with HSF-1 and facilitate its trimerization and binding to heat shock element (HSE) in the promoters of hsps. It is proposed that structural changes in any one or a combination of these factors in response to heat shock may contribute to the age-associated attenuation in the response to stress.
Nature | 2016
Justin Jee; Aviram Rasouly; Ilya Shamovsky; Yonatan Akivis; Susan R. Steinman; Bud Mishra; Evgeny Nudler
In 1943, Luria and Delbrück used a phage-resistance assay to establish spontaneous mutation as a driving force of microbial diversity. Mutation rates are still studied using such assays, but these can only be used to examine the small minority of mutations conferring survival in a particular condition. Newer approaches, such as long-term evolution followed by whole-genome sequencing, may be skewed by mutational ‘hot’ or ‘cold’ spots. Both approaches are affected by numerous caveats. Here we devise a method, maximum-depth sequencing (MDS), to detect extremely rare variants in a population of cells through error-corrected, high-throughput sequencing. We directly measure locus-specific mutation rates in Escherichia coli and show that they vary across the genome by at least an order of magnitude. Our data suggest that certain types of nucleotide misincorporation occur 104-fold more frequently than the basal rate of mutations, but are repaired in vivo. Our data also suggest specific mechanisms of antibiotic-induced mutagenesis, including downregulation of mismatch repair via oxidative stress, transcription–replication conflicts, and, in the case of fluoroquinolones, direct damage to DNA.
Science Signaling | 2006
Ilya Shamovsky; Evgeny Nudler
Large noncoding RNAs (lncRNAs) have emerged as key players in regulating various fundamental cellular processes. Recent reports identify a functional lncRNA, Evf-2, that operates during development to control the expression of specific homeodomain proteins, and they provide important insights into the mechanism of cooperation between a newly discovered nuclear receptor co-repressor protein (SLIRP) and steroid receptor activator RNA. Evf-2 is the first example of lncRNA directly involved in organogenesis in vertebrates.
Methods of Molecular Biology | 2009
Ilya Shamovsky; Evgeny Nudler
The heat shock (HS) response is the major cellular defense mechanism against acute exposure to environmental stresses. The hallmark of the HS response, which is conserved in all eukaryotes, is the rapid and massive induction of expression of a set of cytoprotective genes. Most of the induction occurs at the level of transcription. The master regulator, heat shock transcription factor (HSF, or HSF1 in vertebrates), is responsible for the induction of HS gene transcription in response to elevated temperature. Under normal conditions HSF is present in the cell as an inactive monomer. During HS, HSF trimerizes and binds to a consensus sequence in the promoter of HS genes, stimulating their transcription by up to 200-fold. We have shown that a large, noncoding RNA, HSR1, and the translation elongation factor eEF1A form a complex with HSF during HS and are required for its activation.
Nature Communications | 2017
Ivan Gusarov; Bibhusita Pani; Laurent Gautier; Olga Smolentseva; Svetlana Eremina; Ilya Shamovsky; Olga Katkova-Zhukotskaya; A. S. Mironov; Evgeny Nudler
A high-sugar diet has been associated with reduced lifespan in organisms ranging from worms to mammals. However, the mechanisms underlying the harmful effects of glucose are poorly understood. Here we establish a causative relationship between endogenous glucose storage in the form of glycogen, resistance to oxidative stress and organismal aging in Caenorhabditis elegans. We find that glycogen accumulated on high dietary glucose limits C. elegans longevity. Glucose released from glycogen and used for NADPH/glutathione reduction renders nematodes and human hepatocytes more resistant against oxidative stress. Exposure to low levels of oxidants or genetic inhibition of glycogen synthase depletes glycogen stores and extends the lifespan of animals fed a high glucose diet in an AMPK-dependent manner. Moreover, glycogen interferes with low insulin signalling and accelerates aging of long-lived daf-2 worms fed a high glucose diet. Considering its extensive evolutionary conservation, our results suggest that glycogen metabolism might also have a role in mammalian aging.
Scientific Reports | 2017
Olga Smolentseva; Ivan Gusarov; Laurent Gautier; Ilya Shamovsky; Alicia S. DeFrancesco; Richard Losick; Evgeny Nudler
Bacteria naturally form communities of cells known as biofilms. However the physiological roles of biofilms produced by non-pathogenic microbiota remain largely unknown. To assess the impact of a biofilm on host physiology we explored the effect of several non-pathogenic biofilm-forming bacteria on Caenorhabditis elegans. We show that biofilm formation by Bacillus subtilis, Lactobacillus rhamnosus and Pseudomonas fluorescens induces C. elegans stress resistance. Biofilm also protects against pathogenic infection and prolongs lifespan. Total mRNA analysis identified a set of host genes that are upregulated in response to biofilm formation by B. subtilis. We further demonstrate that mtl-1 is responsible for the biofilm-mediated increase in oxidative stress resistance and lifespan extension. Induction of mtl-1 and hsp-70 promotes biofilm-mediated thermotolerance. ilys-2 activity accounts for biofilm-mediated resistance to Pseudomonas aeruginosa killing. These results reveal the importance of non-pathogenic biofilms for host physiology and provide a framework to study commensal biofilms in higher organisms.
bioRxiv | 2018
Lyly Luhachack; Ilya Shamovsky; Evgeny Nudler
Hydrogen sulfide (H2S) is a ubiquitous gaseous molecule that is endogenously produced in both eukaryotes and prokaryotes. Its role as a pleiotropic signaling molecule has been well characterized in mammals1,2. In contrast, the physiological role of H2S in bacteria only recently became apparent; H2S acts as a cytoprotectant against antibiotics-induced stress and affect the cell’s ability to maintain redox homeostasis 3-5. In E. coli, endogenous H2S production is primarily dependent on 3-mercaptopyruvate sulfurtransferase (3MST), encoded by mstA, previously known as sseA3,4. Here, we show that cells lacking 3MST acquired a unique phenotypic suppressor mutation resulting in compensatory H2S production and tolerance to antibiotics and oxidative stress. Using whole genome sequencing, we mapped a non-synonymous single nucleotide polymorphism (SNP) to uncharacterized Laci-type transcription factor, YcjW. We identified transcriptional regulatory targets of YcjW and discovered a major target, thiosulfate sulfurtransferase PspE, as an alternative mechanism for H2S biosynthesis. Deletion of pspE was sufficient to antagonize phenotypic suppression. Our results reveal a complex interaction between cell metabolism and H2S production and the role, a hithero uncharacterized transcription factor, YcjW, plays in linking the two.