Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilya Trakht is active.

Publication


Featured researches published by Ilya Trakht.


Progress in Neurobiology | 2008

Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways

Seithikurippu R. Pandi-Perumal; Ilya Trakht; Venkataramanujan Srinivasan; D. Warren Spence; Georges J.M. Maestroni; Nava Zisapel; Daniel P. Cardinali

Melatonin, an endogenous signal of darkness, is an important component of the bodys internal time-keeping system. As such it regulates major physiological processes including the sleep wake cycle, pubertal development and seasonal adaptation. In addition to its relevant antioxidant activity, melatonin exerts many of its physiological actions by interacting with membrane MT1 and MT2 receptors and intracellular proteins such as quinone reductase 2, calmodulin, calreticulin and tubulin. Here we review the current knowledge about the properties and signaling of melatonin receptors as well as their potential role in health and some diseases. Melatonin MT1 and MT2 receptors are G protein coupled receptors which are expressed in various parts of the CNS (suprachiasmatic nuclei, hippocampus, cerebellar cortex, prefrontal cortex, basal ganglia, substantia nigra, ventral tegmental area, nucleus accumbens and retinal horizontal, amacrine and ganglion cells) and in peripheral organs (blood vessels, mammary gland, gastrointestinal tract, liver, kidney and bladder, ovary, testis, prostate, skin and the immune system). Melatonin receptors mediate a plethora of intracellular effects depending on the cellular milieu. These effects comprise changes in intracellular cyclic nucleotides (cAMP, cGMP) and calcium levels, activation of certain protein kinase C subtypes, intracellular localization of steroid hormone receptors and regulation of G protein signaling proteins. There are circadian variations in melatonin receptors and responses. Alterations in melatonin receptor expression as well as changes in endogenous melatonin production have been shown in circadian rhythm sleep disorders, Alzheimers and Parkinsons diseases, glaucoma, depressive disorder, breast and prostate cancer, hepatoma and melanoma. This paper reviews the evidence concerning melatonin receptors and signal transduction pathways in various organs. It further considers their relevance to circadian physiology and pathogenesis of certain human diseases, with a focus on the brain, the cardiovascular and immune systems, and cancer.


Psychiatry Research-neuroimaging | 2009

Pathophysiology of depression: role of sleep and the melatonergic system.

Venkataramanujan Srinivasan; Seithikurippu R. Pandi-Perumal; Ilya Trakht; D. Warren Spence; R. Hardeland; Burkhard Poeggeler; Daniel P. Cardinali

Profound disturbances in sleep architecture occur in major depressive disorders (MDD) and in bipolar affective disorders. Reduction in slow wave sleep, decreased latency of rapid eye movement (REM) sleep and abnormalities in the timing of REM/non-REM sleep cycles have all been documented in patients with MDD. It is thus evident that an understanding of the basic mechanisms of sleep regulation is essential for an analysis of the pathophysiology of depressive disorders. The suprachiasmatic nucleus (SCN), which functions as the bodys master circadian clock, plays a major role in the regulation of the sleep/wakefulness rhythm and interacts actively with the homeostatic processes that regulate sleep. The control of melatonin secretion by the SCN, the occurrence of high concentrations of melatonin receptors in the SCN, and the suppression of electrical activity in the SCN by melatonin all underscore the major influence which this neurohormone has in regulating the sleep/wake cycle. The transition from wakefulness to high sleep propensity is associated with the nocturnal rise of endogenous melatonin secretion. Various lines of evidence show that depressed patients exhibit disturbances in both the amplitude and shape of the melatonin secretion rhythm and that melatonin can improve the quality of sleep in these patients. The choice of a suitable antidepressant that improves sleep quality is thus important while treating a depressive disorder. The novel antidepressant agomelatine, which combines the properties of a 5-HT(2C) antagonist and a melatonergic MT(1)/MT(2) receptor agonist, has been found very effective for resetting the disturbed sleep/wake cycle and in improving the clinical status of MDD. Agomelatine has also been found useful in treating sleep problems and improving the clinical status of patients suffering from seasonal affective disorder.


Integrative Cancer Therapies | 2008

Therapeutic actions of melatonin in cancer: possible mechanisms.

Venkataramanujan Srinivasan; D. Warren Spence; Seithikurippu R. Pandi-Perumal; Ilya Trakht; Daniel P. Cardinali

Melatonin is a phylogenetically well-preserved molecule with diverse physiological functions. In addition to its well-known regulatory control of the sleep/wake cycle, as well as circadian rhythms generally, melatonin is involved in immunomodulation, hematopoiesis, and antioxidative processes. Recent human and animal studies have now shown that melatonin also has important oncostatic properties. Both at physiological and pharmacological doses melatonin exerts growth inhibitory effects on breast cancer cell lines. In hepatomas, through its activation of MT 1 and MT2 receptors, melatonin inhibits linoleic acid uptake, thereby preventing the formation of the mitogenic metabolite 1,3-hydroxyoctadecadienoic acid. In animal model studies, melatonin has been shown to have preventative action against nitrosodiethylamine (NDEA)-induced liver cancer. Melatonin also inhibits the growth of prostate tumors via activation of MT1 receptors thereby inducing translocation of the androgen receptor to the cytoplasm and inhibition of the effect of endogenous androgens. There is abundant evidence indicating that melatonin is involved in preventing tumor initiation, promotion, and progression. The anticarcinogenic effect of melatonin on neoplastic cells relies on its antioxidant, immunostimulating, and apoptotic properties. Melatonins oncostatic actions include the direct augmentation of natural killer (NK) cell activity, which increases immunosurveillance, as well as the stimulation of cytokine production, for example, of interleukin (IL)-2, IL-6, IL-12, and interferon (IFN)-γ. In addition to its direct oncostatic action, melatonin protects hematopoietic precursors from the toxic effect of anticancer chemotherapeutic drugs. Melatonin secretion is impaired in patients suffering from breast cancer, endometrial cancer, or colorectal cancer. The increased incidence of breast cancer and colorectal cancer seen in nurses and other night shift workers suggests a possible link between diminished secretion of melatonin and increased exposure to light during nighttime. The physiological surge of melatonin at night is thus considered a “natural restraint” on tumor initiation, promotion, and progression.


Neuroimmunomodulation | 2008

Immunomodulation by Melatonin: Its Significance for Seasonally Occurring Diseases

Venkataramanujam Srinivasan; D. Warren Spence; Ilya Trakht; Seithikurippu R. Pandi-Perumal; Daniel P. Cardinali; Georges J.M. Maestroni

Melatonin is not only synthesized by the pineal gland but also in many other organs and tissues of the body, particularly by lymphoid organs such as the bone marrow, thymus and lymphocytes. Melatonin participates in various functions of the body, among which its immunomodulatory role has assumed considerable significance in recent years. Melatonin has been shown to be involved in the regulation of both cellular and humoral immunity. Melatonin not only stimulates the production of natural killer cells, monocytes and leukocytes, but also alters the balance of T helper (Th)-1 and Th-2 cells mainly towards Th-1 responses and increases the production of relevant cytokines such as interleukin (IL)-2, IL-6, IL-12 and interferon-γ. The regulatory function of melatonin on immune mechanisms is seasonally dependent. This fact may in part account for the cyclic pattern of symptom expression shown by certain infectious diseases, which become more pronounced at particular times of the year. Moreover, melatonin-induced seasonal changes in immune function have also been implicated in the pathogenesis of seasonal affective disorder and rheumatoid arthritis. The clinical significance of the seasonally changing immunomodulatory role of melatonin is discussed in this review.


Nature Reviews Neurology | 2008

The roles of melatonin and light in the pathophysiology and treatment of circadian rhythm sleep disorders

Seithikurippu R. Pandi-Perumal; Ilya Trakht; D. Warren Spence; Venkataramanujan Srinivasan; Yaron Dagan; Daniel P. Cardinali

Normal circadian rhythms are synchronized to a regular 24 h environmental light–dark cycle, and the suprachiasmatic nucleus and the hormone melatonin have important roles in this process. Desynchronization of circadian rhythms, as occurs in chronobiological disorders, can produce severe disturbances in sleep patterns. According to the International Classification of Sleep Disorders, circadian rhythm sleep disorders (CRSDs) include delayed sleep phase syndrome, advanced sleep phase syndrome, non-24 h sleep–wake disorder, jet lag and shift-work sleep disorder. Disturbances in the circadian phase position of plasma melatonin levels have been documented in all of these disorders. There is compelling evidence to implicate endogenous melatonin as an important mediator in CRSD pathophysiology, although further research involving large numbers of patients will be required to clarify whether the disruption of melatonin secretion is a causal factor in CRSDs. In this Review, we focus on the use of exogenous melatonin and light therapy to treat the disturbed sleep–wake rhythms seen in CRSDs.


Brain Research Bulletin | 2010

Potential use of melatonergic drugs in analgesia: mechanisms of action.

Venkataramanujam Srinivasan; Seithikurippu R. Pandi-Perumal; D. Warren Spence; Adam Moscovitch; Ilya Trakht; Gregory M. Brown; Daniel P. Cardinali

Melatonin is a remarkable molecule with diverse physiological functions. Some of its effects are mediated by receptors while other, like cytoprotection, seem to depend on direct and indirect scavenging of free radicals not involving receptors. Among melatonins many effects, its antinociceptive actions have attracted attention. When given orally, intraperitoneally, locally, intrathecally or through intracerebroventricular routes, melatonin exerts antinociceptive and antiallodynic actions in a variety of animal models. These effects have been demonstrated in animal models of acute pain like the tail-flick test, formalin test or endotoxin-induced hyperalgesia as well as in models of neuropathic pain like nerve ligation. Glutamate, gamma-aminobutyric acid, and particularly, opioid neurotransmission have been demonstrated to be involved in melatonins analgesia. Results using melatonin receptor antagonists support the participation of melatonin receptors in melatonins analgesia. However, discrepancies between the affinity of the receptors and the very high doses of melatonin needed to cause effects in vivo raise doubts about the uniqueness of that physiopathological interpretation. Indeed, melatonin could play a role in pain through several alternative mechanisms including free radicals scavenging or nitric oxide synthase inhibition. The use of melatonin analogs like the MT(1)/MT(2) agonist ramelteon, which lacks free radical scavenging activity, could be useful to unravel the mechanism of action of melatonin in analgesia. Melatonin has a promising role as an analgesic drug that could be used for alleviating pain associated with cancer, headache or surgical procedures.


Drug Research | 2011

Melatonergic drugs in clinical practice.

R. Hardeland; Burkhard Poeggeler; Venkataramanujan Srinivasan; Ilya Trakht; Seithikurippu R. Pandi-Perumal; Daniel P. Cardinali

Melatonin (CAS 73-31-4) has both hypnotic and sleep/wake rhythm regulating properties. These sleep promoting actions, which are already demonstrable in healthy humans, have been found useful in subjects suffering from circadian rhythm sleep disorders (CRSD) like delayed sleep phase syndrome (DSPS), jet lag and shift-work sleep disorder. Low nocturnal melatonin production and secretion have been documented in elderly insomniacs, and exogenous melatonin has been shown to be beneficial in treating sleep disturbances of these patients. In comparison to a number of sleep-promoting compounds that are usually prescribed, such as benzodiazepines and z-drugs (zolpidem and zopiclon belonging to the latter ones), melatonin has several advantages of clinical value: it does not cause hangover nor withdrawal effects and is devoid of any addictive potential. However, recent meta-analyses revealed that melatonin is not sufficiently effective in treating most primary sleep disorders. Some of the reasons for a limited efficacy of this natural hormone are related to its extremely short half-life in the circulation, and to the fact that sleep maintenance is also regulated by mechanisms downstream of primary melatonergic actions. Hence, there is an urgent need for the development of melatonin receptor agonists with a longer half-life, which could be suitable for a successful treatment of insomnia. Such requirements are fulfilled by ramelteon (CAS 196597-26-9), which possesses a high affinity for the melatonin receptors MT1 and MT2 present in the circadian pacemaker, the suprachiasmatic nucleus (SCN). Ramelteon also has a substantially longer half-life than melatonin. This new drug has been successfully used in treating elderly insomniacs without any adverse effects reported, and is promising for treating patients with primary insomnia and also those suffering from CRSD. Since sleep disturbances constitute the most prevalent symptoms of various forms of depression, the need for the development of an ideal antidepressant was felt, which would both improve sleep and mitigate depressive symptoms. Since most of the currently used antidepressants, including the selective serotonin re-uptake inhibitors worsen the sleep disturbances of depressive patients, another novel melatonergic drug, agomelatine (CAS 138112-76-2), holds some promise because of its particular combination of actions: it has a high affinity for MT1 and MT2 receptors in the SCN, but it acts additionally as a 5-HT(2C) antagonist [5-hydroxytryptamine (serotonin) receptor 2C antagonist]. The latter property, which is decisive for the antidepressive action, would not favor but potentially antagonize sleep, but this is overcome during night by the melatonergic, sleep-promoting effect. This drug has been found beneficial in treating patients with major depressive and seasonal affective disorders. Unlike the other antidepressants, agomelatine improves both sleep and clinical symptoms of depressive illness and does not have any of the side effects on sleep seen with other compounds in use. This property seems to be of particular value because of the aggravating effects of disturbed sleep in the development of depressive symptoms. Based on these facts, agomelatine seems to be a drug of superior efficacy with a promising future in the treatment of depressive disorders. However, long-term safety studies are required for both ramelteon and agomelatine, with a consideration of the pharmacology of their metabolites, their effects on redox metabolism, and of eventual undesired melatonergic effects, e. g., on reproductive functions. According to current data, both compounds seem to be safe during short-term treatment


Journal of Pineal Research | 2010

Malaria: therapeutic implications of melatonin

Venkataramanujan Srinivasan; D. Warren Spence; Adam Moscovitch; Seithikurippu R. Pandi-Perumal; Ilya Trakht; Gregory M. Brown; Daniel P. Cardinali

Abstract:  Malaria, which infects more than 300 million people annually, is a serious disease. Epidemiological surveys indicate that of those who are affected, malaria will claim the lives of more than one million individuals, mostly children. There is evidence that the synchronous maturation of Plasmodium falciparum, the parasite that causes a severe form of malaria in humans and Plasmodium chabaudi, responsible for rodent malaria, could be linked to circadian changes in melatonin concentration. In vitro melatonin stimulates the growth and development of P. falciparum through the activation of specific melatonin receptors coupled to phospholipase‐C activation and the concomitant increase of intracellular Ca2+. The Ca2+ signaling pathway is important to stimulate parasite transition from the trophozoite to the schizont stage, the final stage of intraerythrocytic cycle, thus promoting the rise of parasitemia. Either pinealectomy or the administration of the melatonin receptor blocking agent luzindole desynchronizes the parasitic cell cycle. Therefore, the use of melatonin antagonists could be a novel therapeutic approach for controlling the disease. On the other hand, the complexity of melatonin’s action in malaria is underscored by the demonstration that treatment with high doses of melatonin is actually beneficial for inhibiting apoptosis and liver damage resulting from the oxidative stress in malaria. The possibility that the coordinated administration of melatonin antagonists (to impair the melatonin signal that synchronizes P. falciparum) and of melatonin in doses high enough to decrease oxidative damage could be a novel approach in malaria treatment is discussed.


Travel Medicine and Infectious Disease | 2008

Jet lag: therapeutic use of melatonin and possible application of melatonin analogs.

Venkataramanujan Srinivasan; D. Warren Spence; Seithikurippu R. Pandi-Perumal; Ilya Trakht; Daniel P. Cardinali

Each year millions of travelers undertake long distance flights over one or more continents. These multiple time zone flights produce a constellation of symptoms known as jet lag. Familiar to almost every intercontinental traveler is the experience of fatigue upon arrival in a new time zone, but almost as problematic are a number of other jet lag symptoms. These include reduced alertness, nighttime insomnia, loss of appetite, depressed mood, poor psychomotor coordination and reduced cognitive skills, all symptoms which are closely affected by both the length and direction of travel. The most important jet lag symptoms are due to disruptions to the bodys sleep/wake cycle. Clinical and pathophysiological studies also indicate that jet lag can exacerbate existing affective disorders. It has been suggested that dysregulation of melatonin secretion and occurrence of circadian rhythm disturbances may be the common links which underlie jet lag and affective disorders. Largely because of its regulatory effects on the circadian system, melatonin has proven to be highly effective for treating the range of symptoms that accompany transmeridian air travel. Additionally, it has been found to be of value in treating mood disorders like seasonal affective disorder. Melatonin acts on MT(1) and MT(2) melatonin receptors located in the hypothalamic suprachiasmatic nuclei, the site of the bodys master circadian clock. Melatonin resets disturbed circadian rhythms and promotes sleep in jet lag and other circadian rhythm sleep disorders, including delayed sleep phase syndrome and shift-work disorder. Although post-flight melatonin administration works efficiently in transmeridian flights across less than 7-8 times zones, in the case longer distances, melatonin should be given by 2-3 days in advance to the flight. To deal with the unwanted side effects which usually accompany this pre-departure treatment (acute soporific and sedative effects in times that may not be wanted), the suppression of circadian rhythmicity by covering symmetrically the phase delay and the phase advance portions of the phase response curve for light, together with the administration of melatonin at local bedtime to resynchronize the circadian oscillator, have been proposed. The current view that sleep loss is a major cause of jet lag has focused interest on two recently developed pharmacological agents. Ramelteon and agomelatine are melatonin receptor agonists which, compared to melatonin itself, have a longer half-life and greater affinity for melatonin receptors and consequently are thought to hold promise for treating a variety of circadian disruptions.


Journal of Pineal Research | 2007

Prevention by melatonin of hepatocarcinogenesis in rats injected with N-nitrosodiethylamine

P. Subramanian; Shankaran Mirunalini; Kadiyala Babu Dakshayani; Seithikurippu R. Pandi-Perumal; Ilya Trakht; Daniel P. Cardinali

Abstract:  N‐nitrosodiethylamine (NDEA) is a potent carcinogenic agent that induces liver cancer. To evaluate the chemopreventive function of melatonin in this experimental model, Wistar male rats received a single i.p. injection of NDEA or vehicle followed by weekly s.c. injections of carbon tetrachloride or vehicle for 6 weeks. Melatonin (5 mg/kg body weight) or its vehicle (0.5 mL saline) was given i.p. on a daily basis 2 hr before lights off for 20 wk. At the end of this period the rats were killed and liver and blood samples were taken for histological and biochemical studies. As markers for liver function, the activity of aspartate transaminase (AST) and alanine transaminase (ALT) and the levels of α‐fetoprotein were measured in serum. To assess lipid peroxidation and the antioxidant status in liver and blood, the levels of thiobarbituric acid reactive substances (TBARS) and of reduced glutathione (GSH) were measured. The activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S‐transferase (GST) was assessed in liver and erythrocyte fraction of NDEA‐treated rats. NDEA administration inhibited body weight, macro‐ and microscopically detectable liver tumors and increased levels of plasma AST, ALT and α‐fetoprotein. NDEA treatment decreased liver TBARS levels and CAT and SOD activities and increased liver GSH levels and GST and GPx activities. Plasma TBARS were augmented, while plasma GSH levels and the activities of erythrocyte CAT, SOD, GST and GPx decreased, in NDEA‐treated rats. Melatonin administration significantly curtailed tumor development and counteracted all the biochemical effects.

Collaboration


Dive into the Ilya Trakht's collaboration.

Top Co-Authors

Avatar

Daniel P. Cardinali

Pontifical Catholic University of Argentina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory M. Brown

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge