Ilya V. Sysoev
Saratov State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ilya V. Sysoev.
Journal of Neuroscience Methods | 2014
Marina V. Sysoeva; Evgenia Sitnikova; Ilya V. Sysoev; Boris P. Bezruchko; Gilles van Luijtelaar
BACKGROUND Advanced methods of signal analysis of the preictal and ictal activity dynamics characterizing absence epilepsy in humans with absences and in genetic animal models have revealed new and unknown electroencephalographic characteristics, that has led to new insights and theories. NEW METHOD Taking into account that some network associations can be considered as nonlinear, an adaptive nonlinear Granger causality approach was developed and applied to analyze cortico-cortical, cortico-thalamic and intrathalamic network interactions from local field potentials (LFPs). The outcomes of adaptive nonlinear models, constructed based on the properties of electroencephalographic signal and on statistical criteria to optimize the number of coefficients in the models, were compared with the outcomes of linear Granger causality. RESULTS The nonlinear adaptive method showed statistically significant preictal changes in Granger causality in almost all pairs of channels, as well as ictal changes in cortico-cortical, cortico-thalamic and intrathalamic networks. Current results suggest rearrangement of interactions in the thalamo-cortical network accompanied the transition from preictal to ictal phase. COMPARISON WITH EXISTING METHOD(S) The linear method revealed no preictal and less ictal changes in causality. CONCLUSIONS Achieved results suggest that this proposed adaptive nonlinear method is more sensitive than the linear one to dynamics of network properties. Since changes in coupling were found before the seizure-related increase of LFP signal amplitude and also based on some additional tests it seems likely that they were not spurious and could not result from signal to noise ratio change.
Neuroscience | 2016
Marina V. Sysoeva; Annika Lüttjohann; E.L.J.M. van Luijtelaar; Ilya V. Sysoev
PURPOSE Spike and wave discharges (SWDs), generated within cortico-thalamo-cortical networks, are the electroencephalographic biomarker of absence epilepsy. The current work aims to identify mechanisms of SWD initiation, maintenance and termination by the analyses of dynamics and directionality of mutual interactions between the neocortex and various functionally different thalamic nuclei. METHODS Local-field potential recordings of 16 male Wistar Albino Glaxo from Rijswijk (WAG/Rij) rats, equipped with electrodes targeting layer 4-6 of the somatosensory cortex, rostral and caudal reticular thalamic nuclei (rRTN and cRTN), ventro-posteromedial (VPM), anterior (ATN) and posterior (PO) thalamic nuclei, were obtained. 3s epochs prior to SWD onset, after SWD onset, prior to SWD offset and after SWD offset were analyzed with newly developed time-variant adapted nonlinear Granger causality. RESULTS A gradual increase in coupling toward SWD onset between cortico-cortical pairs appears as early as 2s preictally. Next first unidirectional increase in coupling is noticed in a restricted number of cortico-thalamic and thalamo-cortical channel pairs, which turn into bidirectional coupling approaching SWD onset, and a gradual increase of intrathalamic coupling. Seizure onset is characterized by a coupling decrease for more than a second in a majority of channel pairs, only the cortex kept driving the cRTN. Intrathalamically the cRTN drives the PO, VPM and ATN. Most channel pairs no longer show differences in coupling with baseline during SWD maintenance, a major exception is the unidirectional coupling between cortex and cRTN. Toward the end of SWDs, more and more channel pairs show an increase in often bidirectional coupling, this increase suddenly vanishes at SWD offset. CONCLUSION The initiation of SWD is due to a gradual increase in intracortical coupling, followed by a selective increase in first unidirectional and later bidirectional coupling between the cortex and thalamus and also intrathalamically. Once the network is oscillating, coupling decreases in most of the channel pairs, although the cortex keeps its influence on the cRTN. The SWD is dampened by a gradual increase in coupling strength and in the number of channel pairs that influence each other; the latter might represent an endogenous brake of SWDs.
Epilepsy & Behavior | 2016
Marina V. Sysoeva; Lyudmila V. Vinogradova; G.D. Kuznetsova; Ilya V. Sysoev; Clementina M. van Rijn
PURPOSE Spike-and-wave discharges (SWDs) recorded in the cortical EEGs of WAG/Rij rats are the hallmark for absence epilepsy in this model. Although this type of epilepsy was long regarded as a form of primary generalized epilepsy, it is now recognized that there is an initiation zone - the perioral region of the somatosensory cortex. However, networks involved in spreading the seizure are not yet fully known. Previously, the dynamics of coupling between different layers of the perioral cortical region and between these zones and different thalamic nuclei was studied in time windows around the SWDs, using nonlinear Granger causality. The aim of the present study was to investigate, using the same method, the coupling dynamics between different regions of the cortex and between these regions and the hippocampus. METHODS Local field potentials were recorded in the frontal, parietal, and occipital cortices and in the hippocampus of 19 WAG/Rij rats. To detect changes in coupling reliably in a short time window, in order to provide a good temporal resolution, the innovative adapted time varying nonlinear Granger causality method was used. Mutual information function was calculated in addition to validate outcomes. Results of both approaches were tested for significance. RESULTS The SWD initiation process was revealed as an increase in intracortical interactions starting from 3.5s before the onset of electrographic seizure. The earliest preictal increase in coupling was directed from the frontal cortex to the parietal cortex. Then, the coupling became bidirectional, followed by the involvement of the occipital cortex (1.5s before SWD onset). There was no driving from any cortical region to hippocampus, but a slight increase in coupling from hippocampus to the frontoparietal cortex was observed just before SWD onset. After SWD onset, an abrupt drop in coupling in all studied pairs was observed. In most of the pairs, the decoupling rapidly disappeared, but driving force from hippocampus and occipital cortex to the frontoparietal cortex was reduced until the SWD termination. CONCLUSION Involvement of multiple cortical regions in SWD initiation shows the fundamental role of corticocortical feedback loops, forming coupling architecture and triggering the generalized seizure. The results add to the ultimate aim to construct a complete picture of brain interactions preceding and accompanying absence seizures in rats.
Biophysics | 2016
M. V. Sysoeva; G.D. Kuznetsova; Ilya V. Sysoev
Simple models that describe some features of the electrical brain activity in rats with genetic absence epilepsy recorded before and after an epileptic seizure have been proposed in this study. These models can help to analyze the efficiency of the Granger causality analysis of the directional connectivity determination. The comparison of the results of the experimental and modeled signal analysis, on one hand, reveals a number of artifacts of this method, and on the other hand, proves its effectiveness in the research on absence epilepsy mechanisms.
Saratov Fall Meeting 2014: Optical Technologies in Biophysics and Medicine XVI; Laser Physics and Photonics XVI; and Computational Biophysics | 2015
Sofia Startceva; Annika Lüettjohann; Ilya V. Sysoev; Gilles van Luijtelaar
This work proposes a new method for automatic marking epileptic spike-wave discharges in local field potential (LFP) signals. The method is based on empirical modelling using radial basis functions to approximate dependency of a further state on the current one. Number and type of radial basis functions used are adjusted to data based on statistical criteria. Due to this the method needs only a few manual efforts for its application to new data. The time resolution of the method is close to the sampling interval of the original data, and real time detection is possible. Detection accuracy of the proposed approach is validated analysing the LFP signals obtained using WAG/Rij rats.
Saratov Fall Meeting 2015: Third International Symposium on Optics and Biophotonics and Seventh Finnish-Russian Photonics and Laser Symposium (PALS) | 2016
Marina V. Sysoeva; G.D. Kuznetsova; Clementina M. van Rijn; Ilya V. Sysoev
WAG/Rij rats are well known genetic model of absence epilepsy, which is traditionally considered as a nonconvulsive generalised epilepsy of unknown aetiology. In current study the effect of (R)-(+)-WIN 55,212-2 (cannabis agonist) injection on the coupling between different parts of cortex was studied on 27 male 8 month old rats using local field potentials. Recently developed non-linear adapted Granger causality approach was used as a primary method. It was shown that first 2 hours after the injection the coupling between most channel pairs rises in comparison with the spontaneous activity, whilst long after the injection (2-6 hours) it drops down. The coupling increase corresponds to the mentioned before treatment effect, when the number and the longitude of seizures significantly decreases. However the subsequent decrease of the coupling in the cortex is accompanied by the dramatic increase of the longitude and the number of seizures. This assumes the hypothesis that a relatively higher coupling in the cortical network can prevent the seizure propagation and generalisation.
Saratov Fall Meeting 2015: Third International Symposium on Optics and Biophotonics and Seventh Finnish-Russian Photonics and Laser Symposium (PALS) | 2016
Maksim V. Kornilov; C. Marjolein Baas; Clementina M. van Rijn; Ilya V. Sysoev
The detection of coupling presence and direction between cortical areas from the EEG is a popular approach in neuroscience. Granger causality method is promising for this task, since it allows to operate with short time series and to detect nonlinear coupling or coupling between nonlinear systems. In this study EEG multichannel data from adolescent children, suffering from unilateral cerebral palsy were investigated. Signals, obtained in rest and during motor activity of affected and less affected hand, were analysed. The changes in inter-hemispheric and intra-hemispheric interactions were studied over time with an interval of two months. The obtained results of coupling were tested for significance using surrogate times series. In the present proceeding paper we report the data of one patient. The modified nonlinear Granger causality is indeed able to reveal couplings within the human brain.
Saratov Fall Meeting 2015: Third International Symposium on Optics and Biophotonics and Seventh Finnish-Russian Photonics and Laser Symposium (PALS) | 2016
Tatiana M. Medvedeva; Annika Lüttjohann; Gilles van Luijtelaar; Ilya V. Sysoev
Absence seizures are known to be highly non-linear large amplitude oscillations with a well pronounced main time scale. Whilst the appearance of the main frequency is usually considered as a transition from noisy complex dynamics of baseline EEG to more regular absence activity, the dynamical properties of this type of epileptiformic activity in genetic absence models was not studied precisely. Here, the estimation of the largest Lyapunov exponent from intracranial EEGs of 10 WAG/Rij rats (genetic model of absence epilepsy) was performed. Fragments of 10 seizures and 10 episodes of on-going EEG each of 4 s length were used for each animal, 3 cortical and 2 thalamic channels were analysed. The method adapted for short noisy data was implemented. The positive values of the largest Lyapunov exponent were found as for baseline as for spike wave discharges (SWDs), with values for SWDs being significantly less than for on-going activity. Current findings may indicate that SWD is a chaotic process with a well pronounced main timescale rather than a periodic regime. Also, the absence activity was shown to be less chaotic than the baseline one.
Physica D: Nonlinear Phenomena | 2015
Ilya V. Sysoev; Marina V. Sysoeva
Chaos Solitons & Fractals | 2006
Boris P. Bezruchko; D. A. Smirnov; Ilya V. Sysoev