Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Imad Matouk is active.

Publication


Featured researches published by Imad Matouk.


PLOS ONE | 2007

The H19 Non-Coding RNA Is Essential for Human Tumor Growth

Imad Matouk; Nathan de-Groot; Shaul Mezan; Suhail Ayesh; Rasha Abu-lail; Abraham Hochberg; Eithan Galun

Background Mutations and epigenetic aberrant signaling of growth factors pathways contribute to carcinogenesis. Recent studies reveal that non-coding RNAs are controllers of gene expression. H19 is an imprinted gene that demonstrates maternal monoallelic expression without a protein product; although its expression is shut off in most tissues postnatally, it is re-activated during adult tissue regeneration and tumorigenesis. Moreover, H19 is highly expressed in liver metastasis derived from a range of carcinomas. The objective of this study is to explore the role of H19 in carcinogenesis, and to determine its identification as an anti-tumor target. Methodology/ Principle Findings By controlling oxygen pressure during tumor cell growth and H19 expression levels, we investigated the role of H19 expression in vitro and in vivo in hepatocellular (HCC) and bladder carcinoma. Hypoxia upregulates the level of H19 RNA. Ablations of tumorigenicity of HCC and bladder carcinomas in vivo are seen by H19 knockdown which also significantly abrogates anchorage-independent growth after hypoxia recovery, while ectopic H19 expression enhances tumorigenic potential of carcinoma cells in vivo. Knocking-down H19 message in hypoxic stress severely diminishes p57kip2 induction. We identified a number of potential downstream targets of H19 RNA, including angiogenin and FGF18. Conclusions H19 RNA harbors pro-tumorigenic properties, thus the H19 gene behaves as an oncogene and may serve as a potential new target for anti-tumor therapy.


Biochimica et Biophysica Acta | 2010

The oncofetal H19 RNA connection: Hypoxia, p53 and cancer

Imad Matouk; Shaul Mezan; Aya Mizrahi; Patricia Ohana; Rasha Abu-lail; Yakov Fellig; Nathan de-Groot; Eithan Galun; Abraham Hochberg

Expression of the imprinted H19 gene is remarkably elevated in a large number of human cancers. Recently, we reported that H19 RNA is up-regulated in hypoxic stress and furthermore, it possesses oncogenic properties. However, the underlying mechanism(s) of these phenomena remain(s) unknown. Here we demonstrate a tight correlation between H19 RNA elevation by hypoxia and the status of the p53 tumor suppressor. Wild type p53 (p53(wt)) prevents the induction of H19 upon hypoxia, and upon its reconstitution in p53(null) cells. The last case is accompanied by a decrease in cell viability. The p53 effect is nuclear and seems independent of its tetramerization. Furthermore, using knockdown and over-expression approaches we identified HIF1-alpha as a critical factor that is responsible for H19 induction upon hypoxia. Knocking down HIF1-alpha abolishes H19 RNA induction, while its over-expression significantly enhances the H19 elevation in p53(null) hypoxic cells. In p53(wt) hypoxic cells simultaneous suppression of p53 and over-expression of HIF1-alpha are needed to induce H19 significantly, while each treatment separately resulting in a mild induction, indicating that the molecular mechanism of p53 suppression effect on H19 may at least in part involve interfering with HIF1-alpha activity. In vivo a significant increase in H19 expression occurred in tumors derived from p53(null) cells but not in p53(wt) cells. Taken together, our results indicate that a functional link exists between p53, HIF1-alpha and H19 that determines H19 elevation in hypoxic cancer cells. We suggest that this linkage plays a role in tumor development.


Molecular Cancer | 2015

The H19 Long non-coding RNA in cancer initiation, progression and metastasis – a proposed unifying theory

Eli Raveh; Imad Matouk; Michal Gilon; Abraham Hochberg

The imprinted oncofetal long non-coding RNA (lncRNA) H19 is expressed in the embryo, down-regulated at birth and then reappears in tumors. Its role in tumor initiation and progression has long been a subject of controversy, although accumulating data suggest that H19 is one of the major genes in cancer. It is actively involved in all stages of tumorigenesis and is expressed in almost every human cancer. In this review we delineate the various functions of H19 during the different stages in the complex process of tumor progression. H19 up-regulation allows cells to enter a “selfish” survival mode in response to stress conditions, such as destabilization of the genome and hypoxia, by accelerating their proliferation rate and increasing overall cellular resistance to stress. This response is tightly correlated with nullification, dysfunction or significant down-regulation of the master tumor suppressor gene P53. The growing evidence of H19’s involvement in both proliferation and differentiation processes, together with its involvement in epithelial to mesenchymal transition (EMT) and also mesenchymal to epithelial transition (MET), has led us to conclude that some of the recent disputes and discrepancies arising from current research findings can be resolved from a viewpoint supporting the oncogenic properties of H19. According to a holistic approach, the versatile, seemingly contradictory functions of H19 are essential to, and differentially harnessed by, the tumor cell depending on its context within the process of tumor progression.


Biochimica et Biophysica Acta | 2014

Oncofetal H19 RNA promotes tumor metastasis.

Imad Matouk; Eli Raveh; Rasha Abu-lail; Shaul Mezan; Michal Gilon; Eitan Gershtain; Tatiana Birman; Jennifer Gallula; Tamar Schneider; Moshe Barkali; Carmelit Richler; Yakov Fellig; Vladimir Sorin; Ayala Hubert; Abraham Hochberg; Abraham Czerniak

The oncofetal H19 gene transcribes a long non-coding RNA(lncRNA) that is essential for tumor growth. Here we found that numerous established inducers of epithelial to mesenchymal transition(EMT) also induced H19/miR-675 expression. Both TGF-β and hypoxia concomitantly induced H19 and miR-675 with the induction of EMT markers. We identified the PI3K/AKT pathway mediating the inductions of Slug, H19 RNA and miR-675 in response to TGF-β treatment, while Slug induction depended on H19 RNA. In the EMT induced multidrug resistance model, H19 level was also induced. In a mouse breast cancer model, H19 expression was tightly correlated with metastatic potential. In patients, we detected high H19 expression in all common metastatic sites tested, regardless of tumor primary origin. H19 RNA suppressed the expression of E-cadherin protein. H19 up-regulated Slug expression concomitant with the suppression of E-cadherin protein through a mechanism that involved miR-675. Slug also up-regulated H19 expression and activated its promoter. Altogether, these results may support the existence of a positive feedback loop between Slug and H19/miR-675, that regulates E-cadherin expression. H19 RNA enhanced the invasive potential of cancer cells in vitro and enhanced tumor metastasis in vivo. Additionally, H19 knockdown attenuated the scattering and tumorigenic effects of HGF/SF. Our results present novel mechanistic insights into a critical role for H19 RNA in tumor progression and indicate a previously unknown link between H19/miR-675, Slug and E-cadherin in the regulation of cancer cell EMT programs.


Molecular Carcinogenesis | 2002

Possible physiological role of H19 RNA

Suhail Ayesh; Imad Matouk; Tamar Schneider; Patricia Ohana; Morris Laster; Wasif Al-Sharef; Nathan de-Groot; Abraham Hochberg

The product of the imprinted oncofetal H19 gene is an untranslated RNA of unknown function. With the human cDNA Atlas microarray, we detected differentially expressed genes modulated by the presence of H19 RNA. Many of the genes that are upregulated by H19 RNA are known to contribute to the invasive, migratory, and angiogenic capacities of cells. Moreover, we provided experimental data indicating that whereas H19 RNA did not have any growth advantage for the cells when cultured in 10% fetal calf serum, it did confer an advantage when cells were cultured in serum‐poor medium. This observation can be explained in part by the inability of the H19‐expressing cells to induce the cyclin‐dependent kinase inhibitor p57kip2 in response to serum stress. Our results favor the possible role of the H19 gene in promoting cancer progression, angiogenesis, and metastasis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth

Yang-Sung Sohn; Sagi Tamir; Luhua Song; Dorit Michaeli; Imad Matouk; Andrea R. Conlan; Yael Harir; Sarah H. Holt; Vladimir Shulaev; Mark L. Paddock; Abraham Hochberg; Ioav Z. Cabanchick; José N. Onuchic; Patricia A. Jennings; Rachel Nechushtai; Ron Mittler

Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy.


Journal of Translational Medicine | 2009

Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences.

Aya Mizrahi; Abraham Czerniak; Tally Levy; Smadar Amiur; Jennifer Gallula; Imad Matouk; Rasha Abu-lail; Vladimir Sorin; Tatiana Birman; Nathan de Groot; Abraham Hochberg; Patricia Ohana

BackgroundOvarian cancer ascites fluid (OCAF), contains malignant cells, is usually present in women with an advanced stage disease and currently has no effective therapy. Hence, we developed a new therapy strategy to target the expression of diphtheria toxin gene under the control of H19 regulatory sequences in ovarian tumor cells. H19 RNA is present at high levels in human cancer tissues (including ovarian cancer), while existing at a nearly undetectable level in the surrounding normal tissue.MethodsH19 gene expression was tested in cells from OCAF by the in-situ hybridization technique (ISH) using an H19 RNA probe. The therapeutic potential of the toxin vector DTA-H19 was tested in ovarian carcinoma cell lines and in a heterotopic animal model for ovarian cancer.ResultsH19 RNA was detected in 90% of patients with OCAF as determined by ISH. Intratumoral injection of DTA-H19 into ectopically developed tumors caused 40% inhibition of tumor growth.ConclusionThese observations may be the first step towards a major breakthrough in the treatment of human OCAF, while the effect in solid tumors required further investigation. It should enable us to identify likely non-responders in advance, and to treat patients who are resistant to all known therapies, thereby avoiding treatment failure.


International Journal of Molecular Sciences | 2013

The Increasing Complexity of the Oncofetal H19 Gene Locus: Functional Dissection and Therapeutic Intervention

Imad Matouk; Eli Raveh; Patricia Ohana; Rasha Abu Lail; Eitan Gershtain; Michal Gilon; Nathan de Groot; Abraham Czerniak; Abraham Hochberg

The field of the long non-coding RNA (lncRNA) is advancing rapidly. Currently, it is one of the most popular fields in the biological and medical sciences. It is becoming increasingly obvious that the majority of the human transcriptome has little or no-protein coding capacity. Historically, H19 was the first imprinted non-coding RNA (ncRNA) transcript identified, and the H19/IGF2 locus has served as a paradigm for the study of genomic imprinting since its discovery. In recent years, we have extensively investigated the expression of the H19 gene in a number of human cancers and explored the role of H19 RNA in tumor development. Here, we discuss recently published data from our group and others that provide further support for a central role of H19 RNA in the process of tumorigenesis. Furthermore, we focus on major transcriptional modulators of the H19 gene and discuss them in the context of the tumor-promoting activity of the H19 RNA. Based on the pivotal role of the H19 gene in human cancers, we have developed a DNA-based therapeutic approach for the treatment of cancers that have upregulated levels of H19 expression. This approach uses a diphtheria toxin A (DTA) protein expressed under the regulation of the H19 promoter to treat tumors with significant expression of H19 RNA. In this review, we discuss the treatment of four cancer indications in human subjects using this approach, which is currently under development. This represents perhaps one of the very few examples of an existing DNA-based therapy centered on an lncRNA system. Apart from cancer, H19 expression has been reported also in other conditions, syndromes and diseases, where deregulated imprinting at the H19 locus was obvious in some cases and will be summarized below. Moreover, the H19 locus proved to be much more complicated than initially thought. It houses a genomic sequence that can transcribe, yielding various transcriptional outputs, both in sense and antisense directions. The major transcriptional outputs of the H19 locus are presented here.


International Journal of Cancer | 2002

Use of H19 regulatory sequences for targeted gene therapy in cancer.

Patricia Ohana; Osaat Bibi; Imad Matouk; Carol Levy; Tatiana Birman; Ilana Ariel; Tamar Schneider; Suhail Ayesh; Hilla Giladi; Morris Laster; Nathan de Groot; Abraham Hochberg

We present a tumor gene therapy approach based on the use of regulatory sequences of the H19 gene that are differentially expressed between normal and cancer cells. We constructed expression vectors carrying the gene for the A fragment of diphtheria toxin (DT‐A) or herpes simplex virus thymidine kinase (HSV‐tk), under the control of a 814 bp 5′‐flanking region of the H19 gene. The cell killing activity of these constructs was in accordance with the relative activity of the H19 regulatory sequences in the transfected cells. We evaluated the therapeutic potential of the gene expression constructs driven by H19 regulatory sequences in an animal model of bladder cancer induced by subcutaneous injection of syngeneic bladder tumor cell lines. Intratumoral injection of these constructs caused a significant suppression of subcutaneous tumor growth, with no obvious toxicity toward the host.


Journal of Gene Medicine | 2005

Regulatory sequences of H19 and IGF2 genes in DNA-based therapy of colorectal rat liver metastases

Patricia Ohana; Pinhas Schachter; Basim Ayesh; Aya Mizrahi; Tatiana Birman; Tamar Schneider; Imad Matouk; Suhail Ayesh; Peter J. K. Kuppen; Nathan de Groot; Abraham Czerniak; Abraham Hochberg

Malignant tumors of the liver are among the most common causes of cancer‐related death throughout the world. Current therapeutic approaches fail to control the disease in most cases. This study seeks to explore the potential utility of transcriptional regulatory sequences of the H19 and insulin growth factor 2 (IGF2) genes for directing tumor‐selective expression of a toxin gene (A fragment of diphtheria toxin), delivered by non‐viral vectors.

Collaboration


Dive into the Imad Matouk's collaboration.

Top Co-Authors

Avatar

Abraham Hochberg

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Patricia Ohana

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Tatiana Birman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Suhail Ayesh

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamar Schneider

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Michal Gilon

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Aya Mizrahi

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Rasha Abu-lail

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Avraham Hochberg

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge