Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Imad Shams is active.

Publication


Featured researches published by Imad Shams.


Nature Communications | 2014

Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax

Xiaodong Fang; Eviatar Nevo; Lijuan Han; Erez Y. Levanon; Jing Zhao; Aaron Avivi; Denis M. Larkin; Xuanting Jiang; Sergey Feranchuk; Yabing Zhu; Alla Fishman; Yue Feng; Noa Sher; Zhiqiang Xiong; Thomas Hankeln; Zhiyong Huang; Vera Gorbunova; Lu Zhang; Wei Zhao; Derek E. Wildman; Yingqi Xiong; Andrei V. Gudkov; Qiumei Zheng; Gideon Rechavi; Sanyang Liu; Lily Bazak; Jie Chen; Binyamin A. Knisbacher; Yao Lu; Imad Shams

The blind mole rat (BMR), Spalax galili, is an excellent model for studying mammalian adaptation to life underground and medical applications. The BMR spends its entire life underground, protecting itself from predators and climatic fluctuations while challenging it with multiple stressors such as darkness, hypoxia, hypercapnia, energetics and high pathonecity. Here we sequence and analyse the BMR genome and transcriptome, highlighting the possible genomic adaptive responses to the underground stressors. Our results show high rates of RNA/DNA editing, reduced chromosome rearrangements, an over-representation of short interspersed elements (SINEs) probably linked to hypoxia tolerance, degeneration of vision and progression of photoperiodic perception, tolerance to hypercapnia and hypoxia and resistance to cancer. The remarkable traits of the BMR, together with its genomic and transcriptomic information, enhance our understanding of adaptation to extreme environments and will enable the utilization of BMR models for biomedical research in the fight against cancer, stroke and cardiovascular diseases.


BMC Biology | 2013

Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: in vivo and in vitro evidence

Irena Manov; Mark Hirsh; Theodore C. Iancu; Assaf Malik; Nick Sotnichenko; Mark Band; Aaron Avivi; Imad Shams

BackgroundSubterranean blind mole rats (Spalax) are hypoxia tolerant (down to 3% O2), long lived (>20 years) rodents showing no clear signs of aging or aging related disorders. In 50 years of Spalax research, spontaneous tumors have never been recorded among thousands of individuals. Here we addressed the questions of (1) whether Spalax is resistant to chemically-induced tumorigenesis, and (2) whether normal fibroblasts isolated from Spalax possess tumor-suppressive activity.ResultsTreating animals with 3-Methylcholantrene (3MCA) and 7,12-Dimethylbenz(a) anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA), two potent carcinogens, confirmed Spalax high resistance to chemically induced cancers. While all mice and rats developed the expected tumors following treatment with both carcinogens, among Spalax no tumors were observed after DMBA/TPA treatment, while 3MCA induced benign fibroblastic proliferation in 2 Spalax individuals out of12, and only a single animal from the advanced age group developed malignancy 18 months post-treatment. The remaining animals are still healthy 30 months post-treatment. In vitro experiments showed an extraordinary ability of normal Spalax cultured fibroblasts to restrict malignant behavior in a broad spectrum of human-derived and in newly isolated Spalax 3MCA-induced cancer cell lines. Growth of cancer cells was inhibited by either direct interaction with Spalax fibroblasts or with soluble factors released into culture media and soft agar. This was accompanied by decreased cancer cell viability, reduced colony formation in soft agar, disturbed cell cycle progression, chromatin condensation and mitochondrial fragmentation. Cells from another cancer resistant subterranean mammal, the naked mole rat, were also tested for direct effect on cancer cells and, similar to Spalax, demonstrated anti-cancer activity. No effect on cancer cells was observed using fibroblasts from mouse, rat or Acomys. Spalax fibroblast conditioned media had no effect on proliferation of noncancerous cells.ConclusionsThis report provides pioneering evidence that Spalax is not only resistant to spontaneous cancer but also to experimentally induced cancer, and shows the unique ability of Spalax normal fibroblasts to inhibit growth and kill cancer cells, but not normal cells, either through direct fibroblast-cancer cell interaction or via soluble factors. Obviously, along with adaptation to hypoxia, Spalax has evolved efficient anti-cancer mechanisms yet to be elucidated. Exploring the molecular mechanisms allowing Spalax to survive in extreme environments and to escape cancer as well as to kill homologous and heterologous cancer cells may hold the key for understanding the molecular nature of host resistance to cancer and identify new anti-cancer strategies for treating humans.


The FASEB Journal | 2005

Increased blood vessel density provides the mole rat physiological tolerance to its hypoxic subterranean habitat

Aaron Avivi; Imad Shams; Alma Joel; Orit Lache; Andrew P. Levy; Eviatar Nevo

The blind subterranean mole rat superspecies Spalax ehrenbergi has evolved adaptations that allow it to survive and carry out intensive activities in its highly hypoxic underground sealed burrows. A key component of this adaptation is a higher capillary density in some Spalax tissues, primarily in muscles used in digging and in other energetic activities, resulting in a shorter diffusion distance for oxygen. Vascular endothelial growth factor (VEGF) is an angiogenic factor that is critical for angiogenesis during development and is found in response to tissue ischemia. We demonstrate here that due to physiological differences, the Spalax muscle regulatory mechanism for VEGF is different than in Rattus muscle. In vivo, the constitutive level of the VEGF mRNA and the mRNA levels of its transcriptional regulator HIF‐1α and its mRNA stabilizer HuR are significantly higher in Spalax muscle than in Rattus muscle. Furthermore, as opposed to Rattus, the mRNA levels of HIF‐1α, HuR, VEGF, as well as that of LDH‐A, the enzyme that catalyzes the production of lactate, an accepted marker of anaerobic metabolism, are not increased in Spalax after hypoxia. However, ex vivo, when oxygenation by blood vessels is no longer relevant, the expression pattern of all these genes is similar in the two rodents under both normoxic and hypoxic conditions. Our studies provide evidence that the highly vascularized muscle in Spalax, the most energy consuming tissue during digging, is resistant to the effects of oxygen deprivation. The significance of these results with respect to ischemic vascular disease is abundantly clear.


The FASEB Journal | 2004

Ontogenetic expression of erythropoietin and hypoxia-inducible factor-1 alpha genes in subterranean blind mole rats

Imad Shams; Eviatar Nevo; Aaron Avivi

Blind subterranean mole rats of the Spalax ehrenbergi superspecies in Israel have evolved multiple adaptive strategies to face underground hypoxia. Hypoxia‐inducible factor‐1α (HIF‐1α) and erythropoietin (Epo) are key factors in the development of normal erythropoiesis and angiogenesis. Here, we demonstrate via real‐time polymerase chain reaction (PCR) quantification that Spalax fetal liver and kidney express higher levels of Epo mRNA than Rattus, generating reinforcement of fetal erythropoiesis underground and adapting it to life underground in an atmosphere of abrupt and sharp fluctuations of O2 supply. In neonates, Rattus liver and kidney express higher Epo levels than Spalax under both normoxia and hypoxia, probably due to Rattus ineffective erythropoiesis during embryonic life and its birth in a poorly ventilated breeding nest under ground. Adult Rattus kidney and liver, and adult Spalax liver express similar levels of Epo mRNA under normoxia and hypoxia. However, adult Spalax hypoxic kidney, the major site of erythropoietin production in adult mammals, shows levels that were twice as high as that of Rattus. Spalax expresses remarkably higher levels of HIF‐1α mRNA than Rattus at all developmental stages studied, which peaked in neonates, as an adaptation against hypoxia.


The FASEB Journal | 2005

Erythropoietin receptor spliced forms differentially expressed in blind subterranean mole rats.

Imad Shams; Eviatar Nevo; Aaron Avivi

Erythropoietin (Epo) is the primary regulator of erythropoiesis, controlling the proliferation, maturation, and survival of erythroid progenitor cells. The functions of Epo are mediated through its specific receptor (EpoR) expressed mainly on the surface of erythroid progenitor cells, and the expression of both responds to hypoxia. The subterranean mole rat (Spalax) is a unique model system to study the molecular mechanisms for adaptation to hypoxia. Here, we cloned two forms of Spalax EpoR: a complete EpoR cDNA as well as a novel truncated bone marrow specific EpoR form. In the full‐length Spalax EpoR (sEpoR), two out of the eight conserved tyrosine‐ phosphorylation sites were substituted (Y481F and Y499G), suggesting that Spalax Epo signaling pathways may be modulated. The level of the sEpoR mRNA in the spleen and in bone marrow was relatively low and similar in Spalax newborns and adults, with no significant response to hypoxia. The truncated sEpoR was not detected in the spleen and comprised only ∼1% of the sEpoR expressed in the bone marrow. In Rattus, the truncated EpoR form was ∼15% of the total expressed receptor. The level of Rattus EpoR in newborn spleens was three‐ to fourfold higher than in Spalax newborns and decreased toward adulthood. Severe hypoxia induces a significant increase in adult Rattus EpoR. Our data provide further insight into the adaptive mechanisms of Spalax to the extreme conditions of hypoxia in its subterranean environment.


Proceedings of the National Academy of Sciences of the United States of America | 2007

An extracellular region of the erythropoietin receptor of the subterranean blind mole rat Spalax enhances receptor maturation

Orly Ravid; Imad Shams; Nathalie Ben Califa; Eviatar Nevo; Aaron Avivi; Drorit Neumann

Erythropoietic functions of erythropoietin (EPO) are mediated by its receptor (EPO-R), which is present on the cell surface of erythroid progenitors and induced by hypoxia. We focused on EPO-R from Spalax galili (sEPO-R), one of the four Israeli species of the subterranean blind mole rat, Spalax ehrenbergi superspecies, as a special natural animal model of high tolerance to hypoxia. Led by the intriguing observation that most of the mouse EPO-R (mEPO-R) is retained in the endoplasmic reticulum (ER), we hypothesized that sEPO-R is expressed at higher levels on the cell surface, thus maximizing the response to elevated EPO, which has been reported in this species. Indeed, we found increased cell-surface levels of sEPO-R as compared with mEPO-R by using flow cytometry analysis of BOSC cells transiently expressing HA-tagged EPO-Rs (full length or truncated). We then postulated that unique extracellular sEPO-R sequence features contribute to its processing and cell-surface expression. To map these domains of the sEPO-R that augment receptor maturation, we generated EPO-R derivatives in which parts of the extracellular region of mEPO-R were replaced with the corresponding fragments of sEPO-R. We found that an extracellular portion of sEPO-R, harboring the N-glycosylation site, conferred enhanced maturation and increased transport to the cell surface of the respective chimeric receptor. Taken together, we demonstrate higher surface expression of sEPO-R, attributed at least in part to increased ER exit, mediated by an extracellular region of this receptor. We speculate that these sEPO-R sequence features play a role in the adaptation of Spalax to extreme hypoxia.


Journal of Molecular Biology | 2013

Transcription Pattern of p53-Targeted DNA Repair Genes in the Hypoxia-Tolerant Subterranean Mole Rat Spalax

Imad Shams; Assaf Malik; Irena Manov; Alma Joel; Mark Band; Aaron Avivi

The tumor suppressor gene p53 induces growth arrest and/or apoptosis in response to DNA damage/hypoxia. Inactivation of p53 confers a selective advantage to tumor cells under a hypoxic microenvironment during tumor progression. The subterranean blind mole rat, Spalax, spends its life underground at low-oxygen tensions, hence developing a wide range of respiratory/molecular adaptations to hypoxic stress, including critical changes in p53 structure and signaling pathway. The highly conserved p53 Arg(R)-172 is substituted by lysine (K) in Spalax, identical with a tumor-associated mutation. Functionality assays revealed that Spalax p53 is unable to activate apoptotic target genes but is still capable of activating cell cycle arrest genes. Furthermore, we have shown that the transcription patterns of representative p53-induced genes (Apaf1 and Mdm2) in Spalax are influenced by hypoxia. Cell cycle arrest allows the cells to repair DNA damage via different DNA repair genes. We tested the transcription pattern of three p53-related DNA repair genes (p53R2, Mlh1, and Msh2) under normoxia and short-acute hypoxia in Spalax, C57BL/6 wild-type mice, and two strains of mutant C57BL/6 mice, each carrying a different mutation at the R172 position. Our results show that while wild-type/mutant mice exhibit strong hypoxia-induced reductions of repair gene transcript levels, no such inhibition is found in Spalax under hypoxia. Moreover, unlike mouse p53R2, Spalax p53R2 transcript levels are strongly elevated under hypoxia. These results suggest that critical repair functions, which are known to be inhibited under hypoxia in mice, remain active in Spalax, as part of its unique hypoxia tolerance mechanisms.


The FASEB Journal | 2008

Cloning and in vivo expression of vascular endothelial growth factor receptor 2 (Flk1) in the naturally hypoxia-tolerant subterranean mole rat

Mark Band; Imad Shams; Alma Joel; Aaron Avivi

Vascular endothelial growth factor receptor (VEGF) plays a critical role in blood vessel formation and affects nerve growth and survival. VEGF receptor 2 (Flkl) functions as the major signal transducer of angiogenesis, mediating VEGF induction of endothelial tubulogenesis. We have cloned and analyzed expression of Flkl in the blind subterranean mole rat Spalax ehrenbergi. Spalax experience abrupt and sharp changes in oxygen supply in their sealed underground niche and, hence, are genetically adapted to hypoxia and serve as a unique, natural mammalian model organism for hypoxia tolerance. Spalax Flkl is relatively conserved at the nucleic acid and amino acid level compared to human, mouse, and rat orthologs. Reverse transcription‐quantitative polymerase chain reaction was used to analyze Flkl expression in muscle and brain of animals exposed to ambient or variant hypoxic oxygen levels at multiple stages of development. Transcript levels were compared with those obtained from Rattus, a primary model for human physiology. Our findings demonstrate that under nor‐moxic conditions Flkl patterns of expression correlate well with our previous investigations of VEGF expression. Exposure to hypoxic conditions resulted in divergent patterns of Flkl expression between Spalax and Rattus and between muscle and brain. It appears that the regulatory mechanisms differentiating expression between the species and between tissues are most likely unique, suggesting that Flkl expression may be regulated by multiple processes, including both angiogene‐sis and neurogenesis.— Band M., Shams, I., Joel, A., Avivi A. Cloning and in vivo expression of vascular endothelial growth factor receptor 2 (Flkl) in the naturally hypoxia‐tolerant subterranean mole rat. FASEB J. 22, 105–112 (2008)


Gene | 2016

Molecular evolution of antioxidant and hypoxia response in long-lived, cancer-resistant blind mole rats: The Nrf2–Keap1 pathway

Hanno Schmidt; Johannes Hangmann; Imad Shams; Aaron Avivi; Thomas Hankeln

The Nrf2-Keap1 pathway is crucial for the cellular antioxidant and hypoxia response in vertebrates. Deciphering its modifications in hypoxia-adapted animals will help understand its functionality under environmental stress and possibly allow for knowledge transfer into biomedical research. The blind mole rat Spalax, a long-lived cancer-resistant rodent, lives in burrows underground and is adapted to severely hypoxic conditions. Here we have conducted a bioinformatical survey of Spalax core genes from the Nrf2-Keap1 pathway on the coding sequence level in comparison to other hypoxia-tolerant and -sensitive rodents. We find strong sequence conservation across all genes, illustrating the pathways importance. One of the central players however, Spalax Keap1, shows a non-conservative amino acid substitution from tyrosine to cysteine in its intervening region (IVR) domain. Cysteines in this location have been shown to be of high functional relevance to the binding and degradation of Nrf2. Therefore, this peculiar substitution could influence the cellular Nrf2 levels in Spalax and, thereby, downstream gene expression in the antioxidant pathway, contributing to the special adaptive phenotype of the blind mole rat.


Scientific Reports | 2017

Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax – a liver transcriptomics approach

Hanno Schmidt; Assaf Malik; Anne Bicker; Gesa Poetzsch; Aaron Avivi; Imad Shams; Thomas Hankeln

The blind subterranean mole rat Spalax shows a remarkable tolerance to hypoxia, cancer-resistance and longevity. Unravelling the genomic basis of these adaptations will be important for biomedical applications. RNA-Seq gene expression data were obtained from normoxic and hypoxic Spalax and rat liver tissue. Hypoxic Spalax broadly downregulates genes from major liver function pathways. This energy-saving response is likely a crucial adaptation to low oxygen levels. In contrast, the hypoxia-sensitive rat shows massive upregulation of energy metabolism genes. Candidate genes with plausible connections to the mole rat’s phenotype, such as important key genes related to hypoxia-tolerance, DNA damage repair, tumourigenesis and ageing, are substantially higher expressed in Spalax than in rat. Comparative liver transcriptomics highlights the importance of molecular adaptations at the gene regulatory level in Spalax and pinpoints a variety of starting points for subsequent functional studies.

Collaboration


Dive into the Imad Shams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irena Manov

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge