Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Imelda Barber is active.

Publication


Featured researches published by Imelda Barber.


Nature | 2014

Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease

Carlos Cruchaga; Celeste M. Karch; Sheng Chih Jin; Bruno A. Benitez; Yefei Cai; Rita Guerreiro; Oscar Harari; Joanne Norton; John Budde; Sarah Bertelsen; Amanda T. Jeng; Breanna Cooper; Tara Skorupa; David Carrell; Denise Levitch; Simon Hsu; Jiyoon Choi; Mina Ryten; John Hardy; Daniah Trabzuni; Michael E. Weale; Adaikalavan Ramasamy; Colin Smith; Celeste Sassi; Jose Bras; J. Raphael Gibbs; Dena Hernandez; Michelle K. Lupton; John Powell; Paola Forabosco

Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimers disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.


Human Molecular Genetics | 2014

Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies

Jose Bras; Rita Guerreiro; Lee Darwent; Laura Parkkinen; Olaf Ansorge; Valentina Escott-Price; Dena Hernandez; Michael A. Nalls; Lorraine N. Clark; Lawrence S. Honig; Karen Marder; Wiesje M. van der Flier; Afina W. Lemstra; Philip Scheltens; Ekaterina Rogaeva; Peter St George-Hyslop; Elisabet Londos; Henrik Zetterberg; Sara Ortega-Cubero; Pau Pastor; Tanis J. Ferman; Neill R. Graff-Radford; Owen A. Ross; Imelda Barber; Anne Braae; Kristelle Brown; Kevin Morgan; Walter Maetzler; Daniela Berg; Claire Troakes

Clinical and neuropathological similarities between dementia with Lewy bodies (DLB), Parkinsons and Alzheimers diseases (PD and AD, respectively) suggest that these disorders may share etiology. To test this hypothesis, we have performed an association study of 54 genomic regions, previously implicated in PD or AD, in a large cohort of DLB cases and controls. The cohort comprised 788 DLB cases and 2624 controls. To minimize the issue of potential misdiagnosis, we have also performed the analysis including only neuropathologically proven DLB cases (667 cases). The results show that the APOE is a strong genetic risk factor for DLB, confirming previous findings, and that the SNCA and SCARB2 loci are also associated after a study-wise Bonferroni correction, although these have a different association profile than the associations reported for the same loci in PD. We have previously shown that the p.N370S variant in GBA is associated with DLB, which, together with the findings at the SCARB2 locus, suggests a role for lysosomal dysfunction in this disease. These results indicate that DLB has a unique genetic risk profile when compared with the two most common neurodegenerative diseases and that the lysosome may play an important role in the etiology of this disorder. We make all these data available.


Neurobiology of Aging | 2014

Missense variant in TREML2 protects against Alzheimer's disease

Bruno A. Benitez; Sheng Chih Jin; Rita Guerreiro; Rob Graham; Jenny Lord; Denise Harold; Rebecca Sims; Jean Charles Lambert; J. Raphael Gibbs; Jose Bras; Celeste Sassi; Oscar Harari; Sarah Bertelsen; Michelle K. Lupton; John Powell; Céline Bellenguez; Kristelle Brown; Christopher Medway; Patrick C.G. Haddick; Marcel van der Brug; Tushar Bhangale; Ward Ortmann; Timothy W. Behrens; Richard Mayeux; Margaret A. Pericak-Vance; Lindsay A. Farrer; Gerard D. Schellenberg; Jonathan L. Haines; Jim Turton; Anne Braae

TREM and TREM-like receptors are a structurally similar protein family encoded by genes clustered on chromosome 6p21.11. Recent studies have identified a rare coding variant (p.R47H) in TREM2 that confers a high risk for Alzheimers disease (AD). In addition, common single nucleotide polymorphisms in this genomic region are associated with cerebrospinal fluid biomarkers for AD and a common intergenic variant found near the TREML2 gene has been identified to be protective for AD. However, little is known about the functional variant underlying the latter association or its relationship with the p.R47H. Here, we report comprehensive analyses using whole-exome sequencing data, cerebrospinal fluid biomarker analyses, meta-analyses (16,254 cases and 20,052 controls) and cell-based functional studies to support the role of the TREML2 coding missense variant p.S144G (rs3747742) as a potential driver of the meta-analysis AD-associated genome-wide association studies signal. Additionally, we demonstrate that the protective role of TREML2 in AD is independent of the role of TREM2 gene as a risk factor for AD.


Neurobiology of Aging | 2016

Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases.

Rita Guerreiro; Valentina Escott-Price; Lee Darwent; Laura Parkkinen; Olaf Ansorge; D Hernandez; Michael A. Nalls; Lorraine N. Clark; Lawrence S. Honig; Karen Marder; Wiesje M. van der Flier; Henne Holstege; Eva Louwersheimer; Afina W. Lemstra; Philip Scheltens; Ekaterina Rogaeva; Peter St George-Hyslop; Elisabet Londos; Henrik Zetterberg; Sara Ortega-Cubero; Pau Pastor; Tanis J. Ferman; Neill R. Graff-Radford; Owen A. Ross; Imelda Barber; Anne Braae; Kristelle Brown; Kevin Morgan; Walter Maetzler; Daniela Berg

The similarities between dementia with Lewy bodies (DLB) and both Parkinsons disease (PD) and Alzheimers disease (AD) are many and range from clinical presentation, to neuropathological characteristics, to more recently identified, genetic determinants of risk. Because of these overlapping features, diagnosing DLB is challenging and has clinical implications since some therapeutic agents that are applicable in other diseases have adverse effects in DLB. Having shown that DLB shares some genetic risk with PD and AD, we have now quantified the amount of sharing through the application of genetic correlation estimates, and show that, from a purely genetic perspective, and excluding the strong association at the APOE locus, DLB is equally correlated to AD and PD.


Lancet Neurology | 2018

Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study

Rita Guerreiro; Owen A. Ross; Celia Kun-Rodrigues; Dena Hernandez; Tatiana Orme; John D Eicher; Claire E. Shepherd; Laura Parkkinen; Lee Darwent; Michael G. Heckman; Sonja W. Scholz; Juan C. Troncoso; Olga Pletnikova; Olaf Ansorge; Jordi Clarimón; Alberto Lleó; Estrella Morenas-Rodríguez; Lorraine N. Clark; Lawrence S. Honig; Karen Marder; Afina W. Lemstra; Ekaterina Rogaeva; Peter St George-Hyslop; Elisabet Londos; Henrik Zetterberg; Imelda Barber; Anne Braae; Kristelle Brown; Kevin Morgan; Claire Troakes

BACKGROUND Dementia with Lewy bodies is the second most common form of dementia in elderly people but has been overshadowed in the research field, partly because of similarities between dementia with Lewy bodies, Parkinsons disease, and Alzheimers disease. So far, to our knowledge, no large-scale genetic study of dementia with Lewy bodies has been done. To better understand the genetic basis of dementia with Lewy bodies, we have done a genome-wide association study with the aim of identifying genetic risk factors for this disorder. METHODS In this two-stage genome-wide association study, we collected samples from white participants of European ancestry who had been diagnosed with dementia with Lewy bodies according to established clinical or pathological criteria. In the discovery stage (with the case cohort recruited from 22 centres in ten countries and the controls derived from two publicly available database of Genotypes and Phenotypes studies [phs000404.v1.p1 and phs000982.v1.p1] in the USA), we performed genotyping and exploited the recently established Haplotype Reference Consortium panel as the basis for imputation. Pathological samples were ascertained following autopsy in each individual brain bank, whereas clinical samples were collected after participant examination. There was no specific timeframe for collection of samples. We did association analyses in all participants with dementia with Lewy bodies, and also only in participants with pathological diagnosis. In the replication stage, we performed genotyping of significant and suggestive results from the discovery stage. Lastly, we did a meta-analysis of both stages under a fixed-effects model and used logistic regression to test for association in each stage. FINDINGS This study included 1743 patients with dementia with Lewy bodies (1324 with pathological diagnosis) and 4454 controls (1216 patients with dementia with Lewy bodies vs 3791 controls in the discovery stage; 527 vs 663 in the replication stage). Results confirm previously reported associations: APOE (rs429358; odds ratio [OR] 2·40, 95% CI 2·14-2·70; p=1·05 × 10-48), SNCA (rs7681440; OR 0·73, 0·66-0·81; p=6·39 × 10-10), an GBA (rs35749011; OR 2·55, 1·88-3·46; p=1·78 × 10-9). They also provide some evidence for a novel candidate locus, namely CNTN1 (rs7314908; OR 1·51, 1·27-1·79; p=2·32 × 10-6); further replication will be important. Additionally, we estimate the heritable component of dementia with Lewy bodies to be about 36%. INTERPRETATION Despite the small sample size for a genome-wide association study, and acknowledging the potential biases from ascertaining samples from multiple locations, we present the most comprehensive and well powered genetic study in dementia with Lewy bodies so far. These data show that common genetic variability has a role in the disease. FUNDING The Alzheimers Society and the Lewy Body Society.


Neurobiology of Aging | 2017

Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies

Celia Kun-Rodrigues; Owen A. Ross; Tatiana Orme; Claire E. Shepherd; Laura Parkkinen; Lee Darwent; Dena Hernandez; Olaf Ansorge; Lorraine N. Clark; Lawrence S. Honig; Karen Marder; Afina W. Lemstra; Philippe Scheltens; Wiesje M. van der Flier; Eva Louwersheimer; Henne Holstege; Ekaterina Rogaeva; Peter St George-Hyslop; Elisabet Londos; Henrik Zetterberg; Imelda Barber; Anne Braae; Kristelle Brown; Kevin Morgan; Walter Maetzler; Daniela Berg; Claire Troakes; Safa Al-Sarraj; Tammaryn Lashley; Janice L. Holton

C9orf72 repeat expansions are a common cause of amyotrophic lateral sclerosis and frontotemporal dementia. To date, no large-scale study of dementia with Lewy bodies (DLB) has been undertaken to assess the role of C9orf72 repeat expansions in the disease. Here, we investigated the prevalence of C9orf72 repeat expansions in a large cohort of DLB cases and identified no pathogenic repeat expansions in neuropathologically or clinically defined cases, showing that C9orf72 repeat expansions are not causally associated with DLB.


Neurobiology of Aging | 2018

Polygenic risk score in postmortem diagnosed sporadic early-onset Alzheimer’s disease

Sultan Chaudhary; Tulsi Patel; Imelda Barber; Tamar Guetta-Baranes; Keeley J. Brookes; Sally Chappell; James Turton; Rita Guerreiro; Jose Bras; Dena Hernandez; Andrew Singleton; John Hardy; David Mann; Kevin Morgan

Sporadic early-onset Alzheimers disease (sEOAD) exhibits the symptoms of late-onset Alzheimers disease but lacks the familial aspect of the early-onset familial form. The genetics of Alzheimers disease (AD) identifies APOEε4 to be the greatest risk factor; however, it is a complex disease involving both environmental risk factors and multiple genetic loci. Polygenic risk scores (PRSs) accumulate the total risk of a phenotype in an individual based on variants present in their genome. We determined whether sEOAD cases had a higher PRS compared to controls. A cohort of sEOAD cases was genotyped on the NeuroX array, and PRSs were generated using PRSice. The target data set consisted of 408 sEOAD cases and 436 controls. The base data set was collated by the International Genomics of Alzheimers Project consortium, with association data from 17,008 late-onset Alzheimers disease cases and 37,154 controls, which can be used for identifying sEOAD cases due to having shared phenotype. PRSs were generated using all common single nucleotide polymorphisms between the base and target data set, PRS were also generated using only single nucleotide polymorphisms within a 500 kb region surrounding the APOE gene. Sex and number of APOE ε2 or ε4 alleles were used as variables for logistic regression and combined with PRS. The results show that PRS is higher on average in sEOAD cases than controls, although there is still overlap among the whole cohort. Predictive ability of identifying cases and controls using PRSice was calculated with 72.9% accuracy, greater than the APOE locus alone (65.2%). Predictive ability was further improved with logistic regression, identifying cases and controls with 75.5% accuracy.


Human Genetics | 2018

Complement receptor 1 gene (CR1) intragenic duplication and risk of Alzheimer’s disease

Ezgi Kucukkilic; Keeley J. Brookes; Imelda Barber; Tamar Guetta-Baranes; Kevin Morgan; Edward J. Hollox

Single nucleotide variants (SNVs) within and surrounding the complement receptor 1 (CR1) gene show some of the strongest genome-wide association signals with late-onset Alzheimer’s disease. Some studies have suggested that this association signal is due to a duplication allele (CR1-B) of a low copy repeat (LCR) within the CR1 gene, which increases the number of complement C3b/C4b-binding sites in the mature receptor. In this study, we develop a triplex paralogue ratio test assay for CR1 LCR copy number allowing large numbers of samples to be typed with a limited amount of DNA. We also develop a CR1-B allele-specific PCR based on the junction generated by an historical non-allelic homologous recombination event between CR1 LCRs. We use these methods to genotype CR1 and measure CR1-B allele frequency in both late-onset and early-onset cases and unaffected controls from the United Kingdom. Our data support an association of late-onset Alzheimer’s disease with the CR1-B allele, and confirm that this allele occurs most frequently on the risk haplotype defined by SNV alleles. Furthermore, regression models incorporating CR1-B genotype provide a better fit to our data compared to incorporating the SNV-defined risk haplotype, supporting the CR1-B allele as the variant underlying the increased risk of late-onset Alzheimer’s disease.


Journal of Alzheimer's Disease Reports | 2017

Methylation profiling RIN3 and MEF2C identifies epigenetic marks associated with sporadic early onset Alzheimer’s disease

Kirsty A. Boden; Imelda Barber; Naomi Clement; Tulsi Patel; Tamar Guetta-Baranes; Keeley J. Brookes; Sally Chappell; Jim Craigon; Natalie H. Chapman; Kevin Morgan; Graham B. Seymour; Andrew Bottley

A number of genetic loci associate with early onset Alzheimer’s disease (EOAD); however, the drivers of this disease remains enigmatic. Genome wide association and in vivo modeling have shown that loss-of-function, e.g., ABCA7, reduced levels of SIRT1 and MEFF2C, or increased levels of PTK2β confer risk or link to the pathogenies. It is known that DNA methylation can profoundly affect gene expression and can impact on the composition of the proteome; therefore, the aim of this study is to assess if genes associated with sporadic EOAD (sEOAD) are differentially methylated. Epi-profiles of DNA extracted from blood and cortex were compared using a pyrosequencing platform. We identified significant group-wide hypomethylation in AD blood when compared to controls for 7 CpGs located within the 3’UTR of RIN3 (CpG1 p = 0.019, CpG2 p = 0.018, CpG3 p = 0.012, CpG4 p = 0.009, CpG5 p = 0.002, CpG6 p = 0.018, and CpG7 p = 0.013, respectively; AD/Control n = 22/26; Male/Female n = 27/21). Observed effects were not gender specific. No group wide significant differences were found in the promoter methylation of PTK2β, ABCA7, SIRT1, or MEF2C, genes known to associate with late onset AD. A rare and significant difference in methylation was observed for one CpG located upstream of the MEF2C promoter in one AD individual only (22% reduction in methylation, p = 2.0E-10; Control n = 26, AD n = 25, Male/Female n = 29/22). It is plausible aberrant methylation may mark sEOAD in blood and may manifest in some individuals as rare epi-variants for genes linked to sEOAD.


bioRxiv | 2018

Heritability and genetic variance of dementia with Lewy bodies

Rita Guerreiro; Valentina Escott-Price; Dena Hernandez; Celia Kun-Rodrigues; Owen A. Ross; Tatiana Orme; Joao Luis Neto; Susana Carmona; Nadia Dehghani; John D Eicher; Claire E. Shepherd; Laura Parkkinen; Lee Darwent; Michael G. Heckman; Sonja W. Scholz; Juan C. Troncoso; Olga Pletnikova; Ted M. Dawson; Liana S. Rosenthal; Olaf Ansorge; Jordi Clarimón; Alberto Lleó; Estrella Morenas-Rodríguez; Lorraine N. Clark; Lawrence S. Honig; Karen Marder; Afina W. Lemstra; Ekaterina Rogaeva; Peter St George-Hyslop; Elisabet Londos

Recent large-scale genetic studies have allowed for the first glimpse of the effects of common genetic variability in dementia with Lewy bodies (DLB), identifying risk variants with appreciable effect sizes. However, it is currently well established that a substantial portion of the genetic heritable component of complex traits is not captured by genome-wide significant SNPs. To overcome this issue, we have estimated the proportion of phenotypic variance explained by genetic variability (SNP heritability) in DLB using a method that is unbiased by allele frequency or linkage disequilibrium properties of the underlying variants. This shows that the heritability of DLB is nearly twice as high as previous estimates based on common variants only (31% vs 59.9%). We also determine the amount of phenotypic variance in DLB that can be explained by recent polygenic risk scores from either Parkinson’s disease (PD) or Alzheimer’s disease (AD), and show that, despite being highly significant, they explain a low amount of variance. Additionally, to identify pleiotropic events that might improve our understanding of the disease, we performed genetic correlation analyses of DLB with over 200 diseases and biomedically relevant traits. Our data shows that DLB has a positive correlation with education phenotypes, which is opposite to what occurs in AD. Overall, our data suggests that novel genetic risk factors for DLB should be identified by larger GWAS and these are likely to be independent from known AD and PD risk variants.

Collaboration


Dive into the Imelda Barber's collaboration.

Top Co-Authors

Avatar

Kevin Morgan

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Anne Braae

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Rita Guerreiro

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dena Hernandez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sally Chappell

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Tulsi Patel

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge