Imelda M. McGonnell
Royal Veterinary College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Imelda M. McGonnell.
Cancer Discovery | 2013
Lynn Bjerke; Alan Mackay; Meera Nandhabalan; Anna Burford; Alexa Jury; Sergey Popov; Diana Carvalho; Kathryn R. Taylor; Maria Vinci; Ilirjana Bajrami; Imelda M. McGonnell; Christopher J. Lord; Rui M. Reis; Darren Hargrave; Alan Ashworth; Paul Workman; Chris Jones
UNLABELLED Children and young adults with glioblastoma (GBM) have a median survival rate of only 12 to 15 months, and these GBMs are clinically and biologically distinct from histologically similar cancers in older adults. They are defined by highly specific mutations in the gene encoding the histone H3.3 variant H3F3A , occurring either at or close to key residues marked by methylation for regulation of transcription—K27 and G34. Here, we show that the cerebral hemisphere-specific G34 mutation drives a distinct expression signature through differential genomic binding of the K36 trimethylation mark (H3K36me3). The transcriptional program induced recapitulates that of the developing forebrain, and involves numerous markers of stem-cell maintenance, cell-fate decisions, and self-renewal.Critically, H3F3A G34 mutations cause profound upregulation of MYCN , a potent oncogene that is causative of GBMs when expressed in the correct developmental context. This driving aberration is selectively targetable in this patient population through inhibiting kinases responsible for stabilization of the protein. SIGNIFICANCE We provide the mechanistic explanation for how the fi rst histone gene mutation inhuman disease biology acts to deliver MYCN, a potent tumorigenic initiator, into a stem-cell compartment of the developing forebrain, selectively giving rise to incurable cerebral hemispheric GBM. Using synthetic lethal approaches to these mutant tumor cells provides a rational way to develop novel and highly selective treatment strategies
Current Biology | 2002
Jennifer Walshe; Habib Maroon; Imelda M. McGonnell; Clive Dickson; Ivor Mason
The hindbrain (brainstem) of all vertebrates follows a segmental developmental strategy and has been the focus of intense study not only for its intrinsic interest but also as a model for how more complex regions of the brain are patterned. Segmentation ultimately serves to organize the development of neuronal populations and their projections, and regional diversity is achieved through each segment having its own identity. The latter being established through differential expression of a hierarchy of transcription factors, including Hox genes, Krox20, and Kreisler/Valentino. Here we identify a novel signaling center in the zebrafish embryo that arises prior to establishment of segmental patterning and which is located centrally within the hindbrain territory in a region that corresponds to the presumptive rhombomere 4. We show that signaling from this region by two members of the FGF family of secreted proteins, FGF3 and FGF8, is required to establish correct segmental identity throughout the hindbrain and for subsequent neuronal development. Spatiotemporal studies of Fgf expression suggest that this patterning mechanism is conserved during hindbrain development in other vertebrate classes.
Neuron | 2003
Matthieu Vermeren; Géraldine S. Maro; Romke Bron; Imelda M. McGonnell; Patrick Charnay; Piotr Topilko; James Cohen
Spinal motor neurons must extend their axons into the periphery through motor exit points (MEPs), but their cell bodies remain within spinal motor columns. It is not known how this partitioning is established in development. We show here that motor neuron somata are confined to the CNS by interactions with a neural crest subpopulation, boundary cap (BC) cells that prefigure the sites of spinal MEPs. Elimination of BC cells by surgical or targeted genetic ablation does not perturb motor axon outgrowth but results in motor neuron somata migrating out of the spinal cord by translocating along their axons. Heterologous neural crest grafts in crest-ablated embryos stop motor neuron emigration. Thus, before the formation of a mature transitional zone at the MEP, BC cells maintain a cell-tight boundary that allows motor axons to cross but blocks neuron migration.
Current Biology | 2002
Imelda M. McGonnell; Anthony Graham
During early vertebrate development, neural crest cells emerge from the dorsal neural tube, migrate into the periphery, and form a wide range of derivatives. There is, however, a significant difference between the cranial and trunk neural crest with respect to the diversity of cell types that each normally produces. Thus, while crest cells from all axial levels form neurons, glia, and melanocytes, the cranial crest additionally generates skeletal derivatives such as bone and cartilage; trunk crest cells are generally thought to lack skeletogenic potential. Here, we show, however, that if avian trunk neural crest cells are cultured in appropriate media, they form both bone and cartilage cells, and if placed into the developing head, they contribute to cranial skeletal components. Thus, the neural crest from all axial levels can generate the full repertoire of crest derivatives. The skeletogenic potential of the trunk neural crest is significant, as it was likely realized in early vertebrates, which had extensive postcranial exoskeletal coverings.
Developmental Dynamics | 2004
Anthony Graham; Jo Begbie; Imelda M. McGonnell
The cranial neural crest has long been viewed as being of particular significance. First, it has been held that the cranial neural crest has a morphogenetic role, acting to coordinate the development of the pharyngeal arches. By contrast, the trunk crest seems to play a more subservient role in terms of embryonic patterning. Second, the cranial crest not only generates neurons, glia, and melanocytes, but additionally forms skeletal derivatives (bones, cartilage, and teeth, as well as smooth muscle and connective tissue), and this potential was thought to be a unique feature of the cranial crest. Recently, however, several studies have suggested that the cranial neural crest may not be so influential in terms of patterning, nor so exceptional in the derivatives that it makes. It is now becoming clear that the morphogenesis of the pharyngeal arches is largely driven by the pharyngeal endoderm. Furthermore, it is now apparent that trunk neural crest cells have skeletal potential. However, it has now been demonstrated that a key role for the cranial neural crest streams is to organise the innervation of the hindbrain by the cranial sensory ganglia. Thus, in the past few years, our views of the significance of the cranial neural crest for head development have been altered. Developmental Dynamics 229:5–13, 2004.
Developmental Dynamics | 2006
J. G. Mount; M. Muzylak; Steven P. Allen; T. Althnaian; Imelda M. McGonnell; Joanna S. Price
Wnt signalling regulates many developmental processes, including the fate specification, polarity, migration, and proliferation of cranial neural crest. The canonical Wnt pathway has also been shown to play an important role in bone physiology and there is evidence for its recapitulation during organ regeneration in lower vertebrates. This study explores the role of the Wnt signalling pathway in deer antlers, frontal bone appendages that are the only mammalian organs capable of regeneration. Immunocytochemistry was used to map the distribution of the activated form of β‐catenin (aβCAT). A low level of aβCAT staining was detected in chondrocytes and in osteoblasts at sites of endochondral bone formation. However, aβCAT was localised in cellular periosteum and in osteoblasts in intramembranous bone, where it co‐localised with osteocalcin. The most intense aβCAT staining was in dividing undifferentiated cells in the mesenchymal growth zone. Antler progenitor cells (APCs) were cultured from this region and when the canonical Wnt pathway was inhibited at the level of Lef/TCF by epigallocatechin gallate (EGCG), the cell number decreased. TUNEL staining revealed that this was as a result of increased apoptosis. Activation of the pathway by lithium chloride (LiCl) had no effect on cell number but inhibited alkaline phosphate activity (ALP), a marker of APC differentiation, whereas EGCG increased ALP activity. This study demonstrates that β‐catenin plays an important role in the regulation of antler progenitor cell survival and cell fate. It also provides evidence that β‐catenins function in regulating bone formation by osteoblasts may be site‐specific. Developmental Dynamics 235:1390–1399, 2006.
Journal of Small Animal Practice | 2010
Colin J. Driver; Clare Rusbridge; H. R. Cross; Imelda M. McGonnell; Holger A. Volk
OBJECTIVES To assess if the volumes of the caudal cranial fossa (CCF), parenchyma within the caudal cranial fossa (CCFP) or ventricles (V) are associated with syringomyelia (SM) in cavalier King Charles spaniels (CKCS) with Chiari-like malformation (CM). To evaluate if volumes are associated with transverse syrinx width. METHODS Magnetic resonance images of 59 CKCS with CM were retrospectively reviewed and grouped with or without SM. Three-dimensional images were created and volumes of the fossae, brain parenchyma and ventricular system were calculated from which percentages of CCF, CCFP and V were created. If present, syrinx size was measured from its maximal transverse width. The percentages were statistically compared between groups, and correlation between percentages and syrinx dimensions was made. RESULTS CKCS with SM had significantly higher CCFP (P=0.0001) and V (P=0.0002) to those without but no significant difference in CCF (P=0.925). There was a positive correlation between CCFP and syrinx width (Pearson r=0.437) and ventricle size to syrinx width (Spearman r=0.627). CLINICAL SIGNIFICANCE A more marked overcrowding of the CCF is associated with SM, which may explain the high incidence of SM in CKCS with CM. The association between ventricle and syrinx dimensions supports the theory that SM development is the result of altered cerebrospinal fluid dynamics.
Veterinary Record | 2012
I. N. Plessas; Clare Rusbridge; Colin J. Driver; Kate Chandler; A. Craig; Imelda M. McGonnell; David Brodbelt; Holger A. Volk
The disease complex Chiari-like malformation (CM) and syringomyelia (SM) has been associated with the development of neuropathic pain (NeP), and commonly affects Cavalier King Charles spaniels (CKCS). This prospective cohort study followed 48 CKCSs with CM and/or SM and clinical signs suggestive of NeP for a period of 39 (±14.3) months from diagnosis. At the end of the study, 36 dogs were still alive; five dogs died of an unrelated or unknown cause, and seven were euthanased due to severe clinical signs suggestive of NeP. During the follow-up period, the clinical signs of scratching, facial rubbing behaviour, vocalisation and exercise ability were evaluated. Nine out of 48 dogs stopped scratching (P<0.001), but there was no statistically significant change in the number of dogs exhibiting exercise intolerance, vocalisation or facial rubbing behaviour. The overall severity of clinical signs based on a visual analogue scale (VAS) (0 mm: no clinical signs 100 mm: severe clinical signs) increased (from median 75 mm (interquartile ranges (IQR) 68–84) to 84 mm (IQR 71.5–91), P<0.001). A quarter of the dogs were static or improved. In general, the majority of the owners felt that the quality of life of their dogs was acceptable. Medical treatments received were gabapentin or pregabalin and/or intermittently, carprofen. The owners perception of their animals progress, and progress based on VAS, had strong positive correlation (Spearmans rank correlation (sr) 0.74, P<0.001). Overall, this study suggests that clinical signs suggestive of NeP progress in three-quarters of CKCSs with CM and/or SM.
Developmental Dynamics | 2007
Corina Schmidt; Imelda M. McGonnell; Steve Allen; Anthony Otto; Ketan Patel
The neural crest is a multipotent embryonic cell population that arises from neural ectoderm and forms derivatives essential for vertebrate function. Neural crest induction requires an ectodermal signal, thought to be a Wnt ligand, but the identity of the Wnt that performs this function in amniotes is unknown. Here, we demonstrate that Wnt6, derived from the ectoderm, is necessary for chick neural crest induction. Crucially, we also show that Wnt6 acts through the non‐canonical pathway and not the beta‐catenin–dependant pathway. Surprisingly, we found that canonical Wnt signaling inhibited neural crest production in the chick embryo. In light of studies in anamniotes demonstrating that canonical Wnt signaling induces neural crest, these results indicate a significant and novel change in the mechanism of neural crest induction during vertebrate evolution. These data also highlight a key role for noncanonical Wnt signaling in cell type specification from a stem population during development. Developmental Dynamics 236:2502–2511, 2007.
Scientific Reports | 2017
A. S. Pollard; B G Charlton; John R. Hutchinson; Thomas Gustafsson; Imelda M. McGonnell; James A. Timmons; Andrew A. Pitsillides
Animals have evolved limb proportions adapted to different environments, but it is not yet clear to what extent these proportions are directly influenced by the environment during prenatal development. The developing skeleton experiences mechanical loading resulting from embryo movement. We tested the hypothesis that environmentally-induced changes in prenatal movement influence embryonic limb growth to alter proportions. We show that incubation temperature influences motility and limb bone growth in West African Dwarf crocodiles, producing altered limb proportions which may, influence post-hatching performance. Pharmacological immobilisation of embryonic chickens revealed that altered motility, independent of temperature, may underpin this growth regulation. Use of the chick also allowed us to merge histological, immunochemical and cell proliferation labelling studies to evaluate changes in growth plate organisation, and unbiased array profiling to identify specific cellular and transcriptional targets of embryo movement. This disclosed that movement alters limb proportions and regulates chondrocyte proliferation in only specific growth plates. This selective targeting is related to intrinsic mTOR (mechanistic target of rapamycin) pathway activity in individual growth plates. Our findings provide new insights into how environmental factors can be integrated to influence cellular activity in growing bones and ultimately gross limb morphology, to generate phenotypic variation during prenatal development.