Imen Jguirim
University of Monastir
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Imen Jguirim.
Clinica Chimica Acta | 2008
Awatef Jelassi; Mohamed Najah; Imen Jguirim; F. Maatouk; S. Lestavel; O.S. Laroussi; M. Rouis; Catherine Boileau; Jean-Pierre Rabès; Mathilde Varret; Mohamed Naceur Slimane
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease caused by mutations in either the low-density lipoprotein receptor, the apolipoprotein B or the proprotein convertase subtilisin/kexin type 9 genes. It is characterized by a high concentration of low-density lipoprotein (LDL), which frequently gives rise to premature coronary disease. In this study, we report a novel splice site mutation of the LDL receptor gene in a Tunisian family. METHODS Seven patients from the family were screened for mutations in the LDLR gene and the apoB gene, using direct sequencing. RT-PCR and study on cultured skin fibroblast were realised to characterize the effect of novel mutation. RESULTS Direct sequencing of the promoter and 18 exons reveals a G>A substitution in the splice site junction of intron 8 (c.1186+1 G>A). Study on cultured skin fibroblasts showed a residual activity of 10% of the LDL receptor. Reverse transcription, amplification and direct sequencing of RNA from patients lymphocytes reveal a deletion of the final 51 bp of exon 8 preserving the reading frame. CONCLUSIONS The study identified a novel splice mutation c.1186+1 G>A in the LDL receptor gene. It causes the utilization of a new cryptic donor splice site 51 bp downstream from the normal site.
Journal of Vascular Research | 2006
Clarisse Cuaz-Pérolin; Imen Jguirim; Guilhem Larigauderie; Awatef Jlassi; Christophe Furman; Martine Moreau; M. John Chapman; Jean-Charles Fruchart; Mohamed Naceur Slimane; Hafid Mezdour; Mustapha Rouis
Aims: We investigated the effect of plasma levels of human tissue inhibitor of metalloproteinase (hTIMP)-1 on arterial lesion development and aneurysm formation in apolipoprotein-E-deficient mice (ApoE–/–). Methods: Control and transgenic mice were fed either a chow diet or a high-fat diet for 90 and 180 days. Results: hTIMP-1 has a tendency to decrease atherosclerotic lesions, but did not attain significance (approximately 6% reduction in hTIMP-1+/+, p = 0.075, and approximately 4% in hTIMP-1+/0, p = 0.088 vs. control). Immunohistological and histological analyses revealed a reduction in macrophage accumulation (23% of control in hTIMP+/0, p = 0.065, and 49% of control in hTIMP+/+, p < 0.05) but not in collagen degradation within the lesion in transgenic mice. Moreover, elastin degradation in sites of pseudo-microaneurysms was reduced in transgenic mice (37% of control in hTIMP-1+/0, p < 0.05, and 50% of control in hTIMP-1+/+, p < 0.05). DNA array analysis of matrix metalloproteinase (MMP) expression followed by real-time PCR quantification revealed a significant up-regulation of MMP-3, MMP-12 and MMP-13 in arterial lesions of ApoE–/– mice fed a high-fat diet in comparison with the same mice fed a chow diet. Conclusion: These data show that hTIMP-1 reduces aneurysm formation in ApoE–/– mice but does not protect them against the development of arterial lesions.
Clinica Chimica Acta | 2010
Awatef Jelassi; Afef Slimani; Imen Jguirim; Mohamed Najah; A. Abid; Lamia Boughamoura; Jawhar Mzid; Moncef Fkih; Fawzi Maatouk; Mustapha Rouis; Mathilde Varret; Mohamed Naceur Slimane
BACKGROUND Autosomal Dominant Hypercholesterolemia (ADH) is an autosomal dominant disease caused by mutations in the low density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. Xanthomas and coronary heart diseases (CHD) at an early age are the major clinical manifestations of the disease. METHODS 16 families with familial hypercholesterolemia from different regions in Tunisia participated in the study. Mutations within the LDLR gene were screened through DNA sequencing. Lipids values were measured by standard enzymatic methods. RESULTS We present here thirty five homozygotes and fifty six heterozygotes. Homozygotes presented extensive xanthomatosis, variable clinical manifestations of CHD, and total cholesterol levels in males and females of 17.26+/-4.18 and 17.64+/-2.59 mmol/L respectively. HDL-cholesterol levels were 0.62+/-0.24 and 1.00+/-0.61 mmol/L for males and females, respectively. None of the heterozygotes had tendon xanthomas (except for one female aged 62), eight had corneal arcus, and nine developed CHD mean between 46 and 88 years old. Total cholesterol levels in males and females ranged from 4.60 to 8.90 and from 4.30 to 10.50 mmol/L, respectively. CONCLUSION Tunisian FH heterozygotes are characterized by a moderate clinical and biological expression of the disease.
Atherosclerosis | 2009
Awatef Jelassi; Imen Jguirim; Mohamed Najah; A.M. Abid; L. Boughamoura; F. Maatouk; M. Rouis; Catherine Boileau; Jean-Pierre Rabès; Mohamed Naceur Slimane; Mathilde Varret
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. In previous studies, we have identified novel mutations in Tunisian FH families. In this study, we have extended our investigation to additional families. Five unrelated probands were screened for mutations in the LDLR and APOB genes, using direct sequencing and enzymatic restriction. We identified two novel LDLR mutations: a missense mutation in exon 7: p.Gly343Cys (c.1027G>T), and a nonsense mutation in exon 17: p.Lys816X (c.2446A>T). Using the PolyPhen and SIFT prediction computer programs the p.Gly343Cys is predicted to have a deleterious effect on LDL receptor activity. The missense mutation we found in exon 3, p.Cys89Trp (c.267C>G), has previously been identified in patients from United Kingdom and Spain, and is reported here for the first time in the Tunisian population. Finally, the framshift mutation in exon 10, p.Ser493ArgfsX44, is reported here for the fourth and fifth time in Tunisian families. The latter is the most frequent FH-causing mutation in Tunisia. These LDLR gene mutations enrich the spectrum of mutations causing FH in the Tunisian population. The framshift mutation, p.Ser493ArgfsX44, seems to be a founder mutation in this population.
Atherosclerosis | 2012
Afef Slimani; Awatef Jelassi; Imen Jguirim; Mohamed Najah; Lamia Rebhi; Asma Omezzine; Faouzi Maatouk; Khaldoun Ben Hamda; Maha Kacem; Jean-Pierre Rabès; Marianne Abifadel; Catherine Boileau; Mustapha Rouis; Mohamed Naceur Slimane; Mathilde Varret
BACKGROUND Autosomal dominant hypercholesterolemia (ADH) is commonly caused by mutations in the low-density lipoprotein (LDL) receptor gene (LDLR), in the apolipoprotein B-100 gene (APOB), or in the proprotein convertase subtilisin kexine 9 gene (PCSK9). ADH subjects carrying a mutation in LDLR present highly variable plasma LDL-cholesterol (LDL-C). This variability might be due to environmental factors or the effect of some modifying genes such as PCSK9 and APOE. AIMS We investigated the molecular basis of thirteen Tunisian ADH families and attempted to determine the impact of PCSK9 and APOE gene variations on LDL-cholesterol levels and on the variable phenotypic expression of the disease. METHODS AND RESULTS Fifty six subjects were screened for mutations in the LDLR gene through direct sequencing. The causative mutation was found to segregate with the disease in each family and a new frameshift mutation, p.Met767CysfsX21, was identified in one family. The distribution of total- and LDL-cholesterol levels, adjusted for age and gender, among homozygous and heterozygous ADH patients varied widely. Within seven families, nine subjects presented low LDL-cholesterol levels despite carrying a mutation in the LDLR gene. To identify the molecular actors underlying this phenotypic variability, the PCSK9 gene was screened using direct sequencing and/or enzymatic restriction analysis, and the apo E genotypes were determined. A new missense variation (p.Pro174Ser) in the PCSK9 gene was identified and characterized as a new putative loss-of-function mutation. CONCLUSION Genetic variations in PCSK9 and APOE genes could explain only part of the variability observed in the phenotypic expression in Tunisian ADH patients carrying mutations in the LDLR gene. Other genetic variants and environmental factors very probably act to fully explain this phenotypic variability.
Clinica Chimica Acta | 2012
Awatef Jelassi; Afef Slimani; Jean Pierre Rabès; Imen Jguirim; Marianne Abifadel; Catherine Boileau; Mohamed Najah; Samir M'rabet; Jawher Mzid; Mohamed Naceur Slimane; Mathilde Varret
Autosomal Dominant Hypercholesterolemia (ADH) is due to defects in the LDL receptor gene (LDLR), the apolipoprotein B-100 gene (APOB) or the proprotein convertase subtilisin/kexin type 9 gene (PCSK9). The aim of this study was to identify and to characterize the ADH-causative mutations in two Tunisian families. Analysis of the LDLR gene was performed by direct sequencing, multiplex ligation-dependent probe amplification (MLPA) and by long range PCR and sequencing. The PCSK9 gene was analysed by direct sequencing and the APOB gene was screened for the most common mutation: p.Arg3527Gln. In the LDLR gene, we found two large deletions and characterized their exact extent and breakpoint sequences. The first one is a deletion of 12,684 bp linking intron 1 to intron 5: g.11205052_11217736del12684. The second deletion spans 2364 bp from intron 4 to 6: g.11216885_11219249del2364. Sequence analysis of each deletion breakpoint indicates that intrachromatid non-allelic homologous recombination (NAHR) between Alu elements is involved. These two large rearrangements in the LDLR gene are the first to be described in the Tunisian population, increasing the spectrum of ADH-causative mutations.
Current Genomics | 2013
Awatef Jelassi; Mohamed Najah; Afef Slimani; Imen Jguirim; Mohamed Naceur Slimane; Mathilde Varret
Autosomal dominant hypercholesterolemia (ADH) is characterized by an isolated elevation of plasmatic low-density lipoprotein (LDL), which predisposes to premature coronary artery disease (CAD) and early death. ADH is largely due to mutations in the low-density lipoprotein receptor gene (LDLR), the apolipoprotein B-100 gene (APOB), or the proprotein convertase subtilisin/kexin type 9 (PCSK9). Early diagnosis and initiation of treatment can modify the disease progression and its outcomes. Therefore, cascade screening protocol with a combination of plasmatic lipid measurements and DNA testing is used to identify relatives of index cases with a clinical diagnosis of ADH. In Tunisia, an attenuated phenotypic expression of ADH was previously reported, indicating that the establishment of a special screening protocol is necessary for this population.
Pathologie Biologie | 2012
Awatef Jelassi; Imen Jguirim; A. Slimani; Mohamed Najah; K.B. Hamda; F. Addad; M. Hassine; F. Maatouk; Mathilde Varret; Mohamed Naceur Slimane
Pathologie Biologie | 2009
Awatef Jelassi; Imen Jguirim; Mohamed Najah; F. Maatouk; K. Ben Hamda; Mohamed Naceur Slimane
BioTechnology: An Indian Journal | 2012
Awatef Jelassi; Afef Slimani; Imen Jguirim; Mohamed Najah; Mohamed Naceur Slimane