Imen Mokdad-Bzeouich
University of Monastir
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Imen Mokdad-Bzeouich.
Cell Stress & Chaperones | 2016
Imen Mokdad-Bzeouich; Nadia Mustapha; Aicha Sassi; Ahmed Bedoui; Mohamed Ghoul; Kamel Ghedira; Leila Chekir-Ghedira
Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses against infection or to ameliorate immune-based pathologies. To determine whether eriodictyol has immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we investigated the stimulatory effect of eriodictyol on spleen cells isolated from BALB/c mice. Eriodictyol significantly stimulated splenocyte proliferation. However, only B lymphocytes (not T lymphocytes) could be stimulated by eriodictyol in a dose-related manner. Studies assessing potential effect of eriodictyol on innate immunity reported that eriodictyol enhanced significantly the killing activity of natural killer (NK) cells, T lymphocytes, and macrophages. We also demonstrated that eriodictyol inhibited nitric oxide (NO) production and lysosomal enzyme activity in murine peritoneal macrophages cultured ex-vivo, suggesting a potential anti-inflammatory effect in situ. Eriodictyol revealed also a cellular anti-oxidant activity in splenocytes and macrophages. Furthermore, eriodictyol increased catalase activity in spleen cells. From this data, it can be concluded that eriodictyol exhibited an immunomodulatory effect that could be ascribed in part to a cytoprotective effect related to its anti-oxidant activity.
Drug and Chemical Toxicology | 2017
Soumaya Kilani-Jaziri; Imen Mokdad-Bzeouich; Mounira Krifa; Nouha Nasr; Kamel Ghedira; Leila Chekir-Ghedira
Abstract Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses and to reduce damage to the human body. To determine whether phenolic compounds (caffeic, ferulic, and p-coumaric acids) have immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we evaluated their effect on splenocyte proliferation and lysosomal enzyme activity. We also investigated the activity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In addition, induction of the cellular antioxidant activity in splenocytes, macrophages, and red blood cells was determined by measuring the fluorescence of the DCF product. The study first results indicated that caffeic, ferulic, and p-coumaric acids significantly promote LPS-stimulated splenocyte proliferation, suggesting a potential activation of B cells, and enhanced humoral immune response in hosts treated by the tested natural products. Phenolic acids significantly enhanced the killing activity of isolated NK and CTL cells but had negligible effects on mitogen-induced proliferation of splenic T cells. We showed that caffeic acid enhances lysosomal enzyme activity in murine peritoneal macrophages, suggesting a potential role in activating such cells. Immunomodulatory activity was concomitant with the cellular antioxidant effect in macrophages and splenocytes of caffeic and ferulic acids. We conclude from this study that caffeic, ferulic, and p-coumaric acids exhibited an immunomodulatory effect which could be ascribed, in part, to their cytoprotective effect via their antioxidant capacity. Furthermore, these results suggest that these natural products could be potentially used to modulate immune cell functions in physiological and pathological conditions.
Melanoma Research | 2016
Nadia Mustapha; Imen Mokdad-Bzeouich; Mouna Maatouk; Kamel Ghedira; Thierry Hennebelle; Leila Chekir-Ghedira
The lack of an efficient agent that does not have the disadvantage of low activity (kojic acid), high cytotoxicity, and mutagenicity (hydroquinone), poor skin penetration (arbutin), or low stability in formulation (glabridin) led us to continue our research on new antipigmentation/skin-lightening agents. Therefore, research of natural products that can modulate the metabolism of pigmentation is of great interest. Otherwise, malignant melanoma is one of the most aggressive forms of skin cancer, with high metastatic potential, and currently, there is no effective chemotherapy against invasive melanoma. Therefore, it is necessary to develop new drugs with potent activity and weak side effects against melanoma. The in-vitro anticancer effect of hawthorn was analyzed against B16F10 melanoma cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of isolated compounds from hawthorn on melanogenesis in B16F10 melanoma cells was investigated by measuring the amounts of melanin and tyrosinase spectrophotometrically at 475 nm. Balb/c mice models inoculated with B16F10 mouse tumor cells were used to evaluate the in-vivo antitumoral potential of hawthorn by assessing its effect on the growth of transplanted tumors. The antioxidant potential of tested samples was evaluated in B16F10 and primary human keratinocyte cells using a cellular antioxidant activity assay. Hawthorn tested samples inhibited effectively the growth of melanoma cells in vitro. Furthermore, it appears that tested samples from hawthorn reduced melanogenesis by inhibiting the tyrosinase activity of B16F10 cells in a dose-dependent manner. In-vivo studies showed that hawthorn total oligomer flavonoids extract treatment at a dose of 150 mg/kg body weight for 21 days in implanted tumor mice resulted in significant inhibition of the tumor growth volume and weight. In addition, tested samples showed significant cellular antioxidant capacity against the reactive oxygen species in B16F10 and primary human keratinocyte cells. Our results indicate that hawthorn could be considered as a promising agent for the treatment of melanoma as it shows antitumor activity in vitro and in vivo. Moreover, hawthorn constituents are shown to be highly effective at inhibiting tyrosinase-mediated melanogenesis in vitro on melanoma cells by preventing oxidation in these cells and without affecting the viability of normal human keratinocyte cells. Then, hawthorn might also be used as a new candidate of natural skin depigmenting agents in skin care products.
Tumor Biology | 2016
Nadia Mustapha; Imen Mokdad-Bzeouich; Aicha Sassi; Besma Abed; Kamel Ghedira; Thierry Hennebelle; Leila Chekir-Ghedira
The search of natural immunomodulatory agents has become an area of great interest in order to reduce damage to the human body. In this study, the immunomodulatory potential of Crataegus azarolus and its isolated hyperoside on mouse lymphocytes and macrophages in vitro was assessed. The effect of C. azarolus natural compounds on splenocytes proliferation, natural killer (NK) and cytotoxic T lymphocytes (CTL) activities, and on macrophage-mediated cytotoxicity were assessed by MTT test. Phagocytic activity and inhibition of nitric oxide (NO) release by macrophages were also evaluated. The antioxidant capacity of these products was evaluated by determining their cellular antioxidant activity (CAA) in splenocytes and macrophages. Depending on the concentrations, both ethyl acetate (EA) extract and hyperoside (Hyp) from C. azarolus affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide release. Whereas, the above-mentioned products significantly promote LPS and lectin-stimulated splenocyte proliferation, implying a potential activation of lymphocytes B and T enhancing humoral and cellular immune responses. Moreover, EA extract and Hyp could enhance the activity of NK and T lymphocytes cells, as well as the macrophages-mediated cytotoxicity against B16F10 cells. The anti-inflammatory activity was concomitant with the cellular antioxidant effect of the tested compounds against macrophages and splenocytes. Collectively, C. azarolus and its isolated hyperoside exhibited an immunomodulatory effect through their antioxidant activity. These findings suggest that C. azarolus should be explored as a novel potential immunomodulatory agent for the treatment of inflammatory diseases.
The Journal of Antibiotics | 2015
Imen Mokdad-Bzeouich; Nadia Mustapha; Fadwa Chaabane; Zied Ghedira; Kamel Ghedira; Mohamed Ghoul; Latifa Chebil; Leila Chekir-Ghedira
In this particular study, the antibacterial activity of esculin and oligomer fractions was assessed. MIC values of esculin and its oligomer fractions as well as of some antibiotics against Gram-positive and Gram-negative strains and against Escherichia coli multiresistant variants were determined by the standard broth microdilution method. Both esculin and oligoesculin fractions exhibited antibacterial effect against reference strains; Staphylococcus aureus, Enterococcus faecalis, Salmonella enteritidis and Salmonella typhimurium. It appears that E3 oligomer fraction had the greatest antibacterial activity against these reference strains. Besides, as E2 and E3 revealed the best antibacterial effect against multiresistant variants of E. coli, we decided to test the effect of each, combined to the antibiotic against which the variants were resistant. In the interaction study, E2 and E3 oligoesculin fractions were found to be effective in reducing the resistance of E. coli 6574 to ofloxacin and the resistance of E. coli 6228 to amoxicillin. Only E3 oligoesculin fraction showed a synergetic interaction with amoxicillin and tetracyclin against E. coli 6708, but no interaction was found either with E2 or E3 fractions against E. coli 6234. Our study allowed us to conclude that oligomerization of esculin increases its antibacterial potential, according to the degree of polymerization.
Tumor Biology | 2016
Imen Mokdad-Bzeouich; Hervé Kovacic; Kamel Ghedira; Latifa Chebil; Mohamed Ghoul; Leila Chekir-Ghedira; José Luis
Cancer metastasis is the major cause of cancer-related death. Chemoprevention is defined as the use of natural or synthetic substances to prevent cancer formation or cancer progress. In the present study, we investigate the antitumor activity of esculin and its oligomer fractions in U87 glioblastoma cells. We showed that esculin and its oligomers reduced U87 cell growth in a dose dependent manner. They also inhibited cell adhesion to collagen IV and vitronectin by interfering with the function of their respective receptors α2β1 and αvβ5 integrins. Furthermore, the tested samples were able to reduce migration of U87 cells towards another extracellular matrix fibronectin. Moreover, esculin and its oligomer fractions inhibited in vitro angiogenesis of endothelial cells (HMEC-1). In summary, our data provide the first evidence that esculin and its oligomer fractions are able to reduce adhesion, migration of glioblastoma cells and in vitro angiogenesis. Esculin and its oligomers may thus exert multi-target functions against cancer cells.
Cell Stress & Chaperones | 2017
Mouna Maatouk; Nadia Mustapha; Imen Mokdad-Bzeouich; Hind Chaaban; Besma Abed; Irina Iaonnou; Kamel Ghedira; Mohamed Ghoul; Leila Chekir Ghedira
Phytochemicals extracted from flowers, roots and bark, leaves, and other plant sources have been used extensively throughout human history with varying levels of efficacy in prevention and treatment of disease. Recently, advanced methods for characterization and clinical use of these materials have allowed modern understanding of their properties to be used as immunomodulatory agents that act by enhancement of endogenous cytoprotective mechanisms, avoiding interference with normal physiologic signaling and highly effective medical treatment with minimal adverse side effects. Simple methods have been identified for improving their biological effects, such as thermal conditioning by heating or freezing—prominent example being heat treatment of lycopene and tetrahydrocannabinol. The present investigation shows improvement of the ability of heat to augment splenocyte proliferation, natural killer (NK) cell activities, and antioxidant capacity of the flavonoid luteolin-7-O-β-glucoside (L7G) in comparison with the native (non heat-treated) molecule, while further demonstrating that both the native and the heat-treated variants exhibit comparable antioxidant properties, as evidenced by their effects in macrophages by inhibition of nitric oxide production and lysosomal enzyme activity in experiments that strengthen lysosomal membrane integrity. Outcomes of these studies suggest that heat-treated L7G shows promise for use in immunotherapy, including anti-cancer regimens, as shown by its improvement of NK cell cytotoxicity.
Pharmaceutical Biology | 2015
Imen Mokdad-Bzeouich; Soumaya Kilani-Jaziri; Nadia Mustapha; Ahmed Bedoui; Kamel Ghedira; Leila Chekir-Ghedira
Abstract Context: The leaves of Eriobotrya japonica (Thunb.) Lindl. (Rosaceae) are used in traditional medicine to treat inflammatory diseases. However, information about the antigenotoxic and antioxidant properties of its leaves remains to be elucidated. Objective: The objective of this work was to evaluate the mutagenic/antimutagenic, genotoxic/antigenotoxic, and antioxidant potentials of aqueous and total oligomers flavonoid (TOF) extracts from E. japonica. Materials and methods: The mutagenic/antimutagenic and genotoxic/antigenotoxic potentials of extracts (50, 250, and 500 µg/plate) were evaluated, respectively, by the Ames test with 48 h incubation and the SOS chromotest test with 2 h incubation. The antioxidant capacity of these extracts (ranging from 50 to 700 µg/mL) was tested using xanthine/xanthine oxidase and the deoxyribose assays. Results: Eriobotrya japonica extracts showed neither mutagenic nor genotoxic effect. The highest protective effect against methyl methanesulfonate and 2-aminoanthracene was obtained in the presence of aqueous extract, with IC50 values of 80 and 140 µg/plate, respectively, against S. typhimurium TA104. Moreover, this extract (500 µg/plate) was also able to reduce significantly the genotoxicity induced by nitrofurantoin and aflatoxin B1 with IC50 values of 140 and 240 µg/assay, respectively. Likewise, aqueous and TOF extracts inhibited xanthine oxidase and superoxide anion formation with IC50 values ranging from 45 to 95 and from 70 to 90 µg/mL, respectively. However, TOF extract is more efficient in inhibiting hydroxyl radical and chelating iron ion with IC50 values of 140 and 400 µg/mL, respectively, when compared with the aqueous extract. Conclusion: Eriobotrya japonica prevents the genotoxicity of some carcinogenic substances probably thanks to its antioxidant capacities.
Biomedicine & Pharmacotherapy | 2018
Mouna Maatouk; Nadia Mustapha; Imen Mokdad-Bzeouich; Hind Chaaban; Irina Ioannou; Kamel Ghedira; Mohamed Ghoul; Leila Chekir-Ghedira
A major problem with cancer chemotherapy is its severe toxic effects on non-target tissues. Assessment of natural products for their protective effect against anticancer drugs induced toxicity is gaining importance in cancer biology. The aim of the present study was to evaluate the effect of native and thermal treated naringin on the protective effect against mitomycin C (MMC) induced genotoxicity. The genotoxicity in liver kidney and brain cells isolated from Balb/C mice were evaluated by performing the comet assay. Antioxidant and lipid peroxidation assays were carried out to understand the protective effects of these compounds. The comet assay showed that heated and native naringin were not genotoxic at the tested dose (40 mg/kg b.w) on liver, kidney and brain cells. A significant decrease in DNA damages was observed, at the tested doses (20 mg/kg b.w and 40 mg/kg b.w) suggesting a protective role of these molecules against the genotoxicity induced by mitomycin C on liver, kidney and brain cells. Moreover, administration of MMC (6 mg/kg b.w.) altered the activities of glutathione peroxidase and superoxide dismutase accompanied by a significant increase of lipid peroxidation. Pretreatment of mouse with heated and native naringin before MMC administration significantly raised the glutathione peroxidase and superoxide dismutase activities followed by a reduced MMC-induced lipid peroxidation. Our study demonstrated that heat treatment of naringin preserve activities of native naringin. The genoprotective properties of heated and native naringin against MMC could be attributed to its antioxidant activities and its inhibitory effect on lipid peroxidation.
Drug and Chemical Toxicology | 2016
Fadwa Chaabane; Imen Mokdad-Bzeouich; Aicha Sassi; Nadia Mustapha; Raja Majouli; Kamel Ghedira; Leila Chekir-Ghedira
Abstract Methanol extract of Daphne gnidium leaves was assessed for its antigenotoxic and neuroprotective effects through antioxidant and antibutyrylcholinesterase activities. Antigenotoxic activity was evaluated against methyl methanesulfonate injected intraperitoneally to mice, using the comet assay. The protective effect of D. gnidium reached 99.12%, at the lowest tested dose (44 mg/kg b.w.) in kidney cells, and 92.16% at the dose of 88 mg/kg b.w. in blood cells. The extract was dissolved in water and administrated to mice by intraperitoneal injection. Antioxidant activity was tested against DPPH radicals. It reached a maximum of 74.52% with an IC50 value of 45 µg/ml. Anticholinesterase activity was determined against butyrylcholinesterase, an enzyme linked to Alzheimer disease. The extract exhibited antibutyrylcholinestrase effect with an inhibition percentage of 35.82% at the lowest tested dose (44 mg/kg b.w.).