Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Immacolata Castellano is active.

Publication


Featured researches published by Immacolata Castellano.


Cellular and Molecular Life Sciences | 2012

γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications

Immacolata Castellano; Antonello Merlino

Abstractγ-Glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are involved in glutathione metabolism and play critical roles in antioxidant defense, detoxification, and inflammation processes. Moreover, γ-GTs have been recently found to be involved in many physiological disorders, such as Parkinson’s disease and diabetes. In this review, the main biochemical and structural properties of γ-GTs isolated from different sources, as well as their conformational stability and mechanism of catalysis, are described and examined with the aim of contributing to the discussion on their structure–function relationships. Possible applications of γ-glutamyltranspeptidases in different fields of biotechnology and medicine are also discussed.


Journal of Structural Biology | 2010

Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis

Antonello Merlino; Irene Russo Krauss; Immacolata Castellano; Emmanuele De Vendittis; Bianca Rossi; Maria Conte; Alessandro Vergara; Filomena Sica

Superoxide dismutases (SODs) are metalloenzymes catalysing the dismutation of superoxide anion radicals into molecular oxygen and hydrogen peroxide. Here, we present the crystal structure of a cold-adapted Fe-SOD from the Antarctic eubacterium Pseudoalteromonas haloplanktis (PhSOD), and that of its complex with sodium azide. The structures were compared with those of the corresponding homologues having a high sequence identity with PhSOD, such as the mesophilic SOD from Escherichia coli (EcSOD) or Pseudomonas ovalis, and the psychrophilic SOD from Aliivibrio salmonicida (AsSOD). These enzymes shared a large structural similarity, such as a conserved tertiary structure and arrangement of the two monomers, an almost identical total number of inter- and intramolecular hydrogen bonds and salt bridges. However, the two cold-adapted SODs showed an increased flexibility of the active site residues with respect to their mesophilic homologues. Structural information was combined with a characterisation of the chemical and thermal stability performed by CD and fluorescence measurements. Despite of its psychrophilic origin, the denaturation temperature of PhSOD was comparable with that of the mesophilic EcSOD, whereas AsSOD showed a lower denaturation temperature. On the contrary, the values of the denaturant concentration at the transition midpoint were in line with the psychrophilic/mesophilic origin of the proteins. These data provide additional support to the hypothesis that cold-adapted enzymes achieve efficient catalysis at low temperature, by increasing the flexibility of their active site; moreover, our results underline how fine structural modifications can alter enzyme flexibility and/or stability without compromising the overall structure of typical rigid enzymes, such as SODs.


Biochimie | 2010

Biochemical and structural properties of gamma-glutamyl transpeptidase from Geobacillus thermodenitrificans: An enzyme specialized in hydrolase activity

Immacolata Castellano; Antonello Merlino; Mosè Rossi; Francesco La Cara

Gamma-glutamyltranspeptidases (gamma-GTs) catalyze the transfer of the gamma-glutamyl moiety of glutathione and related gamma-glutamyl amides to water (hydrolysis) or to amino acids and peptides (transpeptidation) and play a key role in glutathione metabolism. Recently, gamma-GTs have been considered attractive pharmaceutical targets for cancer and useful tools to produce gamma-glutamyl compounds. To find out gamma-GTs with special properties we have chosen microorganisms belonging to Geobacillus species which are source of several thermostable enzymes of potential interest for biotechnology. gamma-GT from Geobacillus thermodenitrificans (GthGT) was cloned, expressed in Escherichia coli, purified to homogeneity and characterized. The enzyme, synthesized as a precursor homotetrameric protein of 61-kDa per subunit, undergoes an internal post-translational cleavage of the 61 kDa monomer into 40- and 21-kDa shorter subunits, which are then assembled into an active heterotetramer composed of two 40- and two 21-kDa subunits. The kinetic characterization of the hydrolysis reaction using L-glutamic acid gamma-(4-nitroanilide) as the substrate reveals that the active enzyme has K(m) 7.6 microM and V(max) 0.36 micromol min/mg. The optimum pH and temperature for the hydrolysis activity are 7.8 and 52 degrees C, respectively. GthGT hydrolyses the physiological antioxidant glutathione, suggesting an involvement of the enzyme in the cellular defense mechanism against oxidative stress. Unlike other gamma-GTs, the mutation of the highly conserved catalytic nucleophile, Thr353, abolishes the post-translational cleavage of the pro-enzyme, but does not completely block the hydrolytic action. Furthermore, GthGT does not show any transpeptidase activity, suggesting that the enzyme is a specialized gamma-glutamyl hydrolase. The GthGT homology-model structure reveals peculiar structural features, which should be responsible for the different functional properties of the enzyme and suggests the structural bases of protein thermostability.


Biochimica et Biophysica Acta | 2008

Glutathionylation of the iron superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis

Immacolata Castellano; Maria Rosaria Ruocco; Francesca Cecere; Antimo Di Maro; Angela Chambery; Andzelika Michniewicz; Giuseppe Parlato; Mariorosario Masullo; Emmanuele De Vendittis

Our previous work showed that the adduct between beta-mercaptoethanol and the single cysteine residue (Cys57) in superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis (PhSOD) reduces the enzyme inactivation by peroxynitrite. In this work, immunoblotting experiments prove that peroxynitrite inactivation of PhSOD involves formation of nitrotyrosine residue(s). In order to study the role of Cys57 as a redox-sensor residue modifiable by cellular thiols, a recombinant PhSOD and two Cys57 mutants were produced and characterized. Recombinant and mutant enzymes share similar activity and peroxynitrite inactivation, but different reactivity towards three glutathione forms. Indeed, oxidized glutathione and S-nitrosoglutathione, but reduced glutathione, lead to S-glutathionylation of recombinant PhSOD. This new covalent modification for a Fe-SOD does not occur in both Cys57 mutants, thus indicating that its target is Cys57. Moreover, mass spectrometry analysis confirmed that S-glutathionylation of Cys57 takes place also with endogenous PhSOD. Formation of this mixed disulfide in PhSOD protects the enzyme from tyrosine nitration and peroxynitrite inactivation. PhSOD undergoes S-glutathionylation during its overproduction in E. coli cells and in a growing culture of P. haloplanktis. In both cases the extent of glutathionylated PhSOD is enhanced upon cell exposure to oxidative agents. We suggest that S-glutathionylation of PhSOD could represent a further cold-adaptation strategy to improve the antioxidant cellular defence mechanism.


Biopolymers | 2009

Rat mitochondrial manganese superoxide dismutase: Amino acid positions involved in covalent modifications, activity, and heat stability†

Immacolata Castellano; Francesca Cecere; Alberto De Vendittis; Roberta Cotugno; Angela Chambery; Antimo Di Maro; Andzelika Michniewicz; Giuseppe Parlato; Mariorosario Masullo; Enrico Vittorio Avvedimento; Emmanuele De Vendittis; Maria Rosaria Ruocco

The role of three amino acid residues (Q143, Y34, S82) of rat mitochondrial superoxide dismutase (ratSOD2) in the enzymatic activity, thermostability, and post‐translational modification of the enzyme was investigated through site‐directed mutagenesis studies. Six recombinant forms of the enzyme were produced, carrying the Q143 or H143 residue with or without the Y34F or S82A replacement. All proteins bound manganese as active cofactor and were organized as homotetramers. The greatest effect on the activity (sixfold reduction) was observed in ratSOD2 forms containing the H143 variant, whereas Y34F and S82A substitutions moderately reduced the enzymatic activity compared to the Q143 form. Heat inactivation studies showed the high thermo‐tolerance of ratSOD2 and allowed an evaluation of the related activation parameters of the heat inactivation process. Compared to Q143, the H143 variant was significantly less heat stable and displayed moderately lower enthalpic and entropic factors; the Y34F substitution caused a moderate reduction of heat stability, whereas the S82A replacement slightly improved the thermo‐tolerance of the Q143 variant; both substitutions significantly increased enthalpic and entropic factors of heat inactivation, the greatest effect being observed with S82A substitution. All recombinant forms of ratSOD2 were glutathionylated in Escherichia coli, a feature pointing to the high reactivity of ratSOD2 toward glutathione. Moreover, the S82 position of the enzyme was phosphorylated in an in vitro system containing human mitochondrial protein extracts as source of protein kinases. These data highlight the role played by some residues in ratSOD2 and suggest a fine regulation of the enzyme occurring in vivo.


Environmental Research | 2016

Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects.

Giovanni Pagano; Marco Guida; Antonietta Siciliano; Rahime Oral; Fatma Koçbaş; Anna Palumbo; Immacolata Castellano; Oriana Migliaccio; Philippe J. Thomas; Marco Trifuoggi

BACKGROUND Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. METHODS Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. RESULTS REEs affected P. lividus larvae with concentration-related increase in developmental defects, 10(-6) to 10(-4)M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10(-5) to 10(-4)M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. CONCLUSION REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies.


Nitric Oxide | 2015

Nitric oxide in marine photosynthetic organisms

Amit Kumar; Immacolata Castellano; Francesco Paolo Patti; Anna Palumbo; Maria Cristina Buia

Nitric oxide is a versatile and powerful signaling molecule in plants. However, most of our understanding stems from studies on terrestrial plants and very little is known about marine autotrophs. This review summarizes current knowledge about the source of nitric oxide synthesis in marine photosynthetic organisms and its role in various physiological processes under normal and stress conditions. The interactions of nitric oxide with other stress signals and cross talk among secondary messengers are also highlighted.


Aquatic Toxicology | 2014

Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide

Oriana Migliaccio; Immacolata Castellano; Giovanna Romano; Anna Palumbo

Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by l-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos.


BioMed Research International | 2010

Diclofenac-Induced Apoptosis in the Neuroblastoma Cell Line SH-SY5Y: Possible Involvement of the Mitochondrial Superoxide Dismutase

Francesca Cecere; Annarita Iuliano; Francesco Albano; Claudia Zappelli; Immacolata Castellano; Pasquale Grimaldi; Mariorosario Masullo; Emmanuele De Vendittis; Maria Rosaria Ruocco

Diclofenac, a nonsteroidal anti-inflammatory drug, induces apoptosis on the neuroblastoma cell line SH-SY5Y through a mitochondrial dysfunction, affecting some antioxidant mechanisms. Indeed, the time- and dose-dependent increase of apoptosis is associated to an early enhancement of the reactive oxygen species (ROS). Mitochondrial superoxide dismutase (SOD2) plays a crucial role in the defence against ROS, thus protecting against several apoptotic stimuli. Diclofenac decreased the protein levels and the enzymatic activity of SOD2, without any significant impairment of the corresponding mRNA levels in the SH-SY5Y extracts. When cells were incubated with an archaeal exogenous thioredoxin, an attenuation of the diclofenac-induced apoptosis was observed, together with an increase of SOD2 protein levels. Furthermore, diclofenac impaired the mitochondrial membrane potential, leading to a release of cytochrome c. These data suggest that mitochondria are involved in the diclofenac-induced apoptosis of SH-SY5Y cells and point to a possible role of SOD2 in this process.


Biochimica et Biophysica Acta | 2012

Exploring the unfolding mechanism of γ-glutamyltranspeptidases: the case of the thermophilic enzyme from Geobacillus thermodenitrificans.

Andrea Pica; Irene Russo Krauss; Immacolata Castellano; Mosè Rossi; Francesco La Cara; Giuseppe Graziano; Filomena Sica; Antonello Merlino

γ-glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are generally synthesized as precursor proteins, which undergo an intra-molecular autocatalytic cleavage yielding a large and a small subunit. In this study, circular dichroism and intrinsic fluorescence measurements have been used to investigate the structural features and the temperature- and guanidinium hydrochloride (GdnHCl)-induced unfolding of the mature form of the γ-GT from Geobacillus thermodenitrificans (GthGT) and that of its T353A mutant, which represents a mimic of the precursor protein. Data indicate that a) the mutant and the mature GthGT have a different secondary structure content and a slightly different exposure of hydrophobic regions, b) the thermal unfolding processes of both GthGT forms occur through a three-state model, characterized by a stable intermediate species, whereas chemical denaturations proceed through a single transition, c) both GthGT forms exhibit remarkable stability against temperature, but they do not display a strong resistance to the denaturing action of GdnHCl. These findings suggest that electrostatic interactions significantly contribute to the protein stability and that both the precursor and the mature form of GthGT assume compact and stable conformations to resist to the extreme temperatures where G. thermodenidrificans lives. Owing to its thermostability and unique catalytic properties, GthGT is an excellent candidate to be used as a glutaminase in food industry.

Collaboration


Dive into the Immacolata Castellano's collaboration.

Top Co-Authors

Avatar

Anna Palumbo

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Antonello Merlino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Emmanuele De Vendittis

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Oriana Migliaccio

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Filomena Sica

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Irene Russo Krauss

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Maria Rosaria Ruocco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Mariorosario Masullo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Amit Kumar

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Giovanna Romano

Stazione Zoologica Anton Dohrn

View shared research outputs
Researchain Logo
Decentralizing Knowledge