Immaculada Herrero-Fresneda
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Immaculada Herrero-Fresneda.
Journal of The American Society of Nephrology | 2006
Nuria Lloberas; Josep M. Cruzado; Marcella Franquesa; Immaculada Herrero-Fresneda; Joan Torras; Gabriela Alperovich; Inés Rama; August Vidal; Josep M. Grinyó
Recent data suggest that the phosphatidylinositol 3-kinase (PI3-K)/Akt/mammalian target of rapamycin (mTOR) pathway is important in diabetic nephropathy. The effect of mTOR blockade by sirolimus (SRL) in diabetic kidney disease in rats was investigated. Diabetes was induced by streptozotocin in male Sprague-Dawley rats. Sixteen weeks later, diabetic animals were divided into the following groups: diabetes (D; n = 8), diabetes + SRL at 1 mg/kg per d, SRL trough level 2.3 +/- 0.25 ng/ml (D+SRL; n = 7); and diabetes + normoglycemia maintained by insulin implants (D+NG; n = 5). There was an age-matched nondiabetic group (ND; n = 6). All animals were followed for 4 wk. The D group showed glomerular hypertrophy (mean glomerular volume 5.0 +/- 0.4 in D versus 3.3 +/- 0.2 10(6) mu(3) in ND; P < 0.05) without renal hyperplasia (calculated by reverse transcription-PCR of proliferative cell nuclear antigen) and albuminuria (29 +/- 4 in D versus 1.4 +/- 1.5 mg/24 h in ND; P < 0.05). Both D+NG and D+SRL groups had a significant reduction of albuminuria, although glomerular hypertrophy was still present. SRL treatment did not modify the number of infiltrating renal ED1(+) cells. Diabetic animals had greater expression of p-Akt and mTOR, unlike ND rats. NG and SRL treatment reduced p-Akt and normalized mTOR. It is interesting that D+SRL was associated with a significant reduction of renal TGF-beta1 and glomerular connective tissue growth factor. SRL treatment reduced glomerular alpha-smooth muscle actin overexpression and reduced significantly the mesangial matrix accumulation that is characteristic of diabetic nephropathy. In conclusion, mTOR blockade by low-dose SRL has a beneficial effect in diabetic kidney disease, suggesting that the mTOR pathway has an important pathogenic role in diabetic nephropathy.
Stem Cells and Development | 2012
Marcella Franquesa; Esther Herrero; Joan Torras; Elia Ripoll; Maria Flaquer; Montse Gomà; Nuria Lloberas; Ignacio Anegon; Josep M. Cruzado; Josep M. Grinyó; Immaculada Herrero-Fresneda
In solid organ transplantation, mesenchymal stem cell (MSC) therapy is strongly emerging among other cell therapies due to the positive results obtained in vitro and in vivo as an immunomodulatory agent and their potential regenerative role. We aimed at testing whether a single dose of MSCs, injected at 11 weeks after kidney transplantation for the prevention of chronic mechanisms, enhanced regeneration and provided protection against the inflammatory and fibrotic processes that finally lead to the characteristic features of chronic allograft nephropathy (CAN). Either bone marrow mononuclear cells (BMCs) injection or no-therapy (NT) were used as control treatments. A rat kidney transplantation model of CAN with 2.5 h of cold ischemia was used, and functional, histological, and molecular parameters were assessed at 12 and 24 weeks after transplantation. MSC and BMC cell therapy preserves renal function at 24 weeks and abrogates proteinuria, which is typical of this model (NT24w: 68.9 ± 26.5 mg/24 h, MSC24w: 16.6 ± 2.3 mg/24 h, BMC24w: 24.1 ± 5.3 mg/24 h, P<0.03). Only MSC-treated animals showed a reduction in interstitial fibrosis and tubular atrophy (NT24w: 2.3 ± 0.29, MSC24w: 0.4 ± 0.2, P<0.03), less T cells (NT: 39.6 ± 9.5, MSC: 8.1 ± 0.9, P<0.03) and macrophages (NT: 20.9 ± 4.7, MSC: 5.9 ± 1.7, P<0.05) infiltrating the parenchyma and lowered expression of inflammatory cytokines while increasing the expression of anti-inflammatory factors. MSCs appear to serve as a protection from injury development rather than regenerate the damaged tissue, as no differences were observed in Ki67 expression, and kidney injury molecule-1, Clusterin, NGAL, and hepatocyte growth factor expression were only up-regulated in nontreated animals. Considering the results, a single delayed MSC injection is effective for the long-term protection of kidney allografts.
Transplant International | 2007
Joan Torras Ambròs; Immaculada Herrero-Fresneda; Oscar Gulias Borau; Josep M. Grinyo Boira
This study reviews the current understanding of ischemic preconditioning (IP) in experimental and clinical setting, and the mechanisms that mediate the complex processes involved as a tool to protect against ischemia and reperfusion (I/R) injury, but is not intended as a complete literature review of preconditioning. IP has been mainly elucidated in cardiac ischemia. Recent reports confirm the efficacy of pre‐ and postconditioning in cardiac surgery and percutaneous coronary interventions in humans. IP utilizes endogenous as well as distant mechanisms in skeletal muscle, liver, lung, kidney, intestine and brain in animal models to convey varying degrees of protection from I/R injury. Specifically, preconditioned tissues exhibit altered energy metabolism, better electrolyte homeostasis and genetic reorganization, as well as less oxygen‐free radicals and activated neutrophils release, reduced apoptosis and better microcirculatory perfusion. To date, there are few human studies, but recent trials suggest that human liver, lung and skeletal muscle acquire protection after IP. Present data address the potential therapeutic application of IP in the prevention of I/R damage specially aimed at clinical transplantation. IP is ubiquitous but more research is required to fully translate these findings to the clinical arena.
American Journal of Pathology | 2003
Immaculada Herrero-Fresneda; Joan Torras; Josep M. Cruzado; Enric Condom; August Vidal; Marta Riera; Nuria Lloberas; Jeroni Alsina; Josep M. Grinyó
This study assesses the individual contributions of the nonalloreactive factor, cold ischemia (CI), and alloreactivity to late functional and structural renal graft changes, and examines the effect of the association of both factors on the progression of chronic allograft nephropathy. Lewis rats acted as receptors of kidneys from either Lewis or Fischer rats. For CI, kidneys were preserved for 5 hours. The rats were divided into four groups: Syn, syngeneic graft; SynI, syngeneic graft and CI; Allo, allogeneic graft; AlloI, allogeneic graft and CI. Renal function was assessed every 4 weeks for 24 weeks. Grafts were evaluated for acute inflammatory response at 1 week and for chronic histological damage at 24 weeks. Only when CI and allogenicity were combined did immediate posttransplant mortality occur, while survivors showed accelerated renal insufficiency that induced further mortality at 12 weeks after transplant. Solely ischemic rats developed renal insufficiency. Renal structural damage in ischemic rats was clearly tubulointerstitial, while significant vasculopathy and glomerulosclerosis appeared only in the allogeneic groups. There was increased infiltration of macrophages and expression of mRNA-transforming growth factor-beta1 in the ischemic groups, irrespective of the allogeneic background. The joint association of CI plus allogenicity significantly increased cellular infiltration at both early and late stages, aggravating tubulointerstitial and vascular damage considerably. In summary, CI is mainly responsible for tubulointerstitial damage, whereas allogenicity leads to vascular lesion. The association of both factors accelerates and aggravates the progression of experimental chronic allograft nephropathy.
The FASEB Journal | 2002
Nuria Lloberas; Juan Torras; Immaculada Herrero-Fresneda; Josep M. Cruzado; Marta Riera; Isabel Hurtado; Josep M. Grinyó
Reperfusion injury is considered primarily an inflammatory response to oxidative stress. In vitro, oxygen free radicals induce the formation of oxidized phospholipids with platelet‐activating factor (PAF) activity (PAF‐like lipids). We examined the following: 1) whether PAF and PAF‐like lipids are released during reperfusion; 2) the relationship between these phospholipids and oxidative damage on the one hand, and leukocyte recruitment in renal tissue on the other; and 3) whether antioxidant treatment influences the behavior of these phospholipids, the renal inflammatory response, and the outcome of postischemic acute renal failure. After 60 min of warm renal ischemia in rabbits, a release of PAF and, particularly, PAF‐like lipids was seen in the first 15 min of reperfusion. In addition, the release of those phospholipids was associated with intense tissue DNA oxidation and with an increase in myeloperoxidase activity. Vitamin C was able to attenuate these postischemic oxidative changes, decrease PAF and PAF‐like lipid levels, and, consequently, reduce myeloperoxidase activity. After 40 min of warm renal ischemia in rats, vitamin C treatment ameliorated renal function and structure. This is the first in vivo demonstration of the release of phospholipid oxidation products as part of an oxidative‐inflammatory response after renal ischemia‐reperfusion, with the release of phospholipid oxidation products significantly reduced by antioxidant treatment.
Nephrology Dialysis Transplantation | 2009
Juan Torras; Immaculada Herrero-Fresneda; Oscar Gulias; Maria Flaquer; August Vidal; Josep M. Cruzado; Nuria Lloberas; Marcel·la Franquesa; Josep M. Grinyó
BACKGROUND In clinical renal transplantation, an increase in proteinuria after conversion from calcineurin inhibitors to rapamycin has been reported. In contrast, there are studies showing a nephro-protective effect of rapamycin in proteinuric diseases characterized by progressive interstitial inflammatory fibrosis. METHODS Because of the contradictory reports concerning rapamycin on proteinuria, we examined proteinuria and podocyte damage markers on two renal disease models, with clearly different pathophysiological mechanisms: a glomerular toxico-immunological model induced by puromycin aminonucleoside, and a chronic hyperfiltration and inflammatory model by mass reduction, both treated with a fixed high rapamycin dose. RESULTS In puromycin groups, rapamycin provoked significant increases in proteinuria, together with a significant fall in podocin immunofluorescence, as well as clear additional damage to podocyte foot processes. Conversely, after mass reduction, rapamycin produced lower levels of proteinuria and amelioration of inflammatory and pro-fibrotic damage. In contrast to the puromycin model, higher glomerular podocin and nephrin expression and amelioration of glomerular ultrastructural damage were found. CONCLUSIONS We conclude that rapamycin has dual opposing effects on subjacent renal lesion, with proteinuria and podocyte damage aggravation in the glomerular model and a nephro-protective effect in the chronic inflammatory tubulointerstitial model. Rapamycin produces slight alterations in podocyte structure when acting on healthy podocytes, but it clearly worsens those podocytes damaged by other concomitant injury.
Nephrology Dialysis Transplantation | 2008
Nuria Lloberas; Joan Torras; Gabriela Alperovich; Josep M. Cruzado; Pepita Giménez-Bonafé; Immaculada Herrero-Fresneda; Marcel·la Franquesa; Inés Rama; Josep M. Grinyó
BACKGROUND The association of calcineurin inhibitors (CNIs) with mTOR inhibitors (mTORi) is still a problem in clinical practice and there is substantial interest in better understanding the impact of these associations on kidney toxicity. We aimed to analyse the functional and histological profiles of damage and to define the contribution of inflammatory and pro-fibrotic mediators in the association of cyclosporine (CsA) and/or tacrolimus (Tac) with sirolimus (SRL). METHODS A well-defined model of nephrotoxicity in salt-depleted male rats was used. Monotherapy groups were distributed as a non-treated control group with saline solution (n = 12), the Tac group (n = 16) (tacrolimus 6 mg/kg/day) and the CsA group (n = 13) (CsA 15 mg/kg/day). The groups with different associations were scattered as the Tac + SRL group (n = 14) (tacrolimus 6 mg/kg/day and rapamycin 3 mg/kg/day) and the CsA + SRL group (n = 7) (CsA 15 mg/kg/day and rapamycin 3 mg/kg/day). Groups were divided into 30 and 70 days of follow-up, but the CsA + SRL group was only studied for 30 days because animals became sick. RESULTS Rats with the CsA + SRL association were the only ones which showed a significant reduction in body weight, impairment of renal function and severe and diffuse tubular vacuolization and tubular atrophy following a striped distribution, and scarce areas of the kidney were still preserved. The Tac + SRL association did not produce renal function impairment, and mild histological damage including enhanced periglomerular tubular atrophy was observed. This local damage affected the distal convoluted tubule involving macula densa and juxtaglomerular apparatus. Pro-inflammatory mediators paralleled functional and structural data. ED-1 and TNF-alpha were noticeably higher in the CsA + SRL than in the Tac + SRL association. Only in the CsA + SRL association an important increase in alpha-SMA+ cells was seen, mainly found in the areas with tubular atrophy. TGF-beta1 was also markedly enhanced in the CsA + SRL association whilst monotherapy or Tac + SRL groups at 30 days TGF-beta1 did not show any changes. However, at 70 days of treatment TGF-beta1 was significantly increased in the Tac + SRL group. Animals receiving SRL showed a decrease in renal vascular endothelial growth factor (VEGF) expression. This growth factor was significantly down-regulated in both CNI associations than in SRL monotherapy. P-glycoprotein (Pgp) was overexpressed in CsA and CsA + SRL therapy whilst Tac and TAC + SRL showed a middle increase Pgp expression but higher than the control and SRL group. CONCLUSION We conclude that the association of SRL with high doses of CsA or Tac produces a different functional, histological, inflammatory and pro-fibrogenic pattern. Thus, the addition of SRL to high doses of CsA leads to severe renal injury. Combination with high doses of Tac is clearly less deleterious in the short term. However, there is a low grade of pro-fibrotic inflammatory expression when this association is prolonged.
Diabetologia | 2012
Maria Flaquer; Marcella Franquesa; August Vidal; Nuria Bolaños; Joan Torras; Nuria Lloberas; Immaculada Herrero-Fresneda; J.M Grinyó; Josep M. Cruzado
Aims/hypothesisWe previously demonstrated hepatocyte growth factor (HGF) gene therapy was able to induce regression of glomerulosclerosis in diabetic nephropathy through local reparative mechanisms. The aim of this study was to test whether bone-marow-derived cells are also involved in this HGF-induced reparative process.MethodsWe have created chimeric db/db mice as a model of diabetes that produce enhanced green fluorescent protein (EGFP) in bone marrow cells. We performed treatment with HGF gene therapy either alone or in combination with granulocyte-colony stimulating factor, in order to induce mobilisation of haematopoietic stem cells in these diabetic and chimeric animals.ResultsWe find HGF gene therapy enhances renal expression of stromal-cell-derived factor-1 and is subsequently associated with an increased number of bone-marrow-derived cells getting into the injured kidneys. These cells are mainly monocyte-derived macrophages, which may contribute to the renal tissue repair and regeneration consistently observed in our model. Finally, HGF gene therapy is associated with the presence of a small number of Bowman’s capsule parietal epithelial cells producing EGFP, suggesting they are fused with bone-marrow-derived cells and are contributing to podocyte repopulation.Conclusions/interpretationAltogether, our findings provide new evidence about the therapeutic role of HGF and open new opportunities for inducing renal regeneration in diabetic nephropathy.
Transplantation | 2000
Immaculada Herrero-Fresneda; Joan Torras; Nuria Lloberas; Marta Riera; Josep M. Cruzado; Enric Condom; Manel Merlos; Jeroni Alsina; Josep M. Grinyó
Background. Ischemia-reperfusion injury is considered a risk factor for the development of chronic transplant nephropathy (CTN) although the mechanisms that mediate its effects have not been completely established. We have previously shown that treatment with a platelet-activating factor (PAF) receptor antagonist (UR12670) protected kidneys from the progression to chronic nephropathy induced by warm ischemia. Here we examine the contribution of cold ischemia to the development of late functional and structural kidney changes in rats subjected to syngeneic renal transplantation and the role of PAF in this chronic nephropathy. Subjects and Methods. Lewis rats were used as kidney donors and recipients, which were transplanted either immediately or after a cold ischemia period of 5 hr. Contralateral nephrectomy was performed on the seventh day after transplantation. Cyclosporine was administered for 15 days after transplantation. Groups were as follows: Sy, immediate transplantation; SyI, transplantation after 5 hr of cold ischemia; SyIUr, transplantation after 5 hr of cold ischemia plus UR12670 from the transplantation day to the end of the study, at 24 weeks. Serum creatinine, creatinine clearance, and proteinuria were determined every 4 weeks. Urinary PAF excretion was determined in the 24th week. At the end of the study, kidney tissue was processed for histological study (number of infiltrating macrophages, tubulointerstitial damage, and percentage of interstitial area). Results. Rats grafted with ischemic kidneys (SyI) developed renal insufficiency and proteinuria, increased their urinary PAF excretion, and had histological lesions that resemble CTN. In contrast, rats grafted with nonischemic kidneys (Sy) maintained a stable renal function, without proteinuria, and showed no histological abnormalities in the kidney. Long-term treatment with UR12670 (SyIUr) ameliorated renal function, lowered urinary PAF excretion, and reduced the number of infiltrating macrophages, tubulointerstitial damage, and the percentage of interstitial area. Conclusions. In the absence of alloreactivity, cold ischemia induces CTN, which is associated with enhanced urinary PAF excretion. The protecting effect of UR12670 confirms that PAF is involved in the progression to CTN.
PLOS ONE | 2013
Elia Ripoll; Ana Merino; Montse Gomà; Josep M. Aran; Nuria Bolaños; Laura de Ramon; Immaculada Herrero-Fresneda; Oriol Bestard; Josep M. Cruzado; Josep M. Grinyó; Juan Torras
Lupus nephritis (LN) is an autoimmune disorder in which co-stimulatory signals have been involved. Here we tested a cholesterol-conjugated-anti-CD40-siRNA in dendritic cells (DC) in vitro and in a model of LPS to check its potency and tissue distribution. Then, we report the effects of Chol-siRNA in an experimental model of mice with established lupus nephritis. Our in vitro studies in DC show a 100%intracellular delivery of Chol-siRNA, with a significant reduction in CD40 after LPS stimuli. In vivo in ICR mice, the CD40-mRNA suppressive effects of our Chol-siRNA on renal tissue were remarkably sustained over a 5 days after a single preliminary dose of Chol-siRNA. The intra-peritoneal administration of Chol-siRNA to NZB/WF1 mice resulted in a reduction of anti-DNA antibody titers, and histopathological renal scores as compared to untreated animals. The higher dose of Chol-siRNA prevented the progression of proteinuria as effectively as cyclophosphamide, whereas the lower dose was as effective as CTLA4. Chol-siRNA markedly reduced insterstitialCD3+ and plasma cell infiltrates as well as glomerular deposits of IgG and C3. Circulating soluble CD40 and activated splenic lymphocyte subsets were also strikingly reduced by Chol-siRNA. Our data show the potency of our compound for the therapeutic use of anti-CD40-siRNA in human LN and other autoimmune disorders.