Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Immo Söllner is active.

Publication


Featured researches published by Immo Söllner.


Nature Nanotechnology | 2015

Deterministic photon–emitter coupling in chiral photonic circuits

Immo Söllner; Sahand Mahmoodian; Sofie Lindskov Hansen; Leonardo Midolo; Alisa Javadi; Gabija Kiršanskė; Tommaso Pregnolato; Haitham El-Ella; Eun Hye Lee; Jin Dong Song; Søren Stobbe; Peter Lodahl

Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.


Nature Communications | 2015

Single-photon non-linear optics with a quantum dot in a waveguide

Alisa Javadi; Immo Söllner; M. Arcari; S. Lindskov Hansen; Leonardo Midolo; Sahand Mahmoodian; Gabija Kiršanskė; Tommaso Pregnolato; Eun Ha Lee; Jin Dong Song; Søren Stobbe; Peter Lodahl

Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon–photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.


Foundations of probability and physics | 2009

Testing Born's Rule in Quantum Mechanics with a Triple Slit Experiment

Urbasi Sinha; C. Couteau; Zachari Medendorp; Immo Söllner; Raymond Laflamme; Rafael D. Sorkin; Gregor Weihs

In Mod. Phys. Lett. A 9, 3119 (1994), one of us (R.D.S) investigated a formulation of quantum mechanics as a generalized measure theory. Quantum mechanics computes probabilities from the absolute squares of complex amplitudes, and the resulting interference violates the (Kolmogorov) sum rule expressing the additivity of probabilities of mutually exclusive events. However, there is a higher order sum rule that quantum mechanics does obey, involving the probabilities of three mutually exclusive possibilities. We could imagine a yet more general theory by assuming that it violates the next higher sum rule. In this paper, we report results from an ongoing experiment which sets out to test the validity of this second sum rule by measuring the interference patterns produced by three slits and all the possible combinations of those slits being open or closed. We use an attenuated laser light combined with single photon counting to confirm the particle character of the measured light.


Foundations of Physics | 2012

Testing Born’s Rule in Quantum Mechanics for Three Mutually Exclusive Events

Immo Söllner; Benjamin Gschosser; Patrick Mai; Benedikt Pressl; Zoltán Vörös; Gregor Weihs

We present a new experimental approach using a three-path interferometer and find a tighter empirical upper bound on possible violations of Born’s Rule. A deviation from Born’s rule would result in multi-order interference. Among the potential systematic errors that could lead to an apparent violation we specifically study the nonlinear response of our detectors and present ways to calibrate this error in order to obtain an even better bound.


Physical Review Letters | 2012

Nonuniversal intensity correlations in a two-dimensional Anderson-localizing random medium.

Pedro García; Søren Stobbe; Immo Söllner; Peter Lodahl

Complex dielectric media often appear opaque because light traveling through them is scattered multiple times. Although the light scattering is a random process, different paths through the medium can be correlated encoding information about the medium. Here, we present spectroscopic measurements of nonuniversal intensity correlations that emerge when embedding quantum emitters inside a disordered photonic crystal that is found to Anderson-localize light. The emitters probe in situ the microscopic details of the medium, and imprint such near-field properties onto the far-field correlations. Our findings provide new ways of enhancing light-matter interaction for quantum electrodynamics and energy harvesting, and may find applications in subwavelength diffuse-wave spectroscopy for biophotonics.


Physical Review Letters | 2015

Photon Sorting, Efficient Bell Measurements, and a Deterministic Controlled-Z Gate Using a Passive Two-Level Nonlinearity

Timothy C. Ralph; Immo Söllner; Sahand Mahmoodian; Andrew White; Peter Lodahl

Although the strengths of optical non-linearities available experimentally have been rapidly increasing in recent years, significant challenges remain to using such non-linearities to produce useful quantum devices such as efficient optical Bell state analysers or universal quantum optical gates. Here we describe a new approach that avoids the current limitations by combining strong non-linearities with active Gaussian operations in efficient protocols for Bell state analysers and Controlled-Sign gates.


Journal of Physics B | 2009

Characterizing heralded single-photon sources with imperfect measurement devices

M. Razavi; Immo Söllner; E. Bocquillon; C. Couteau; Raymond Laflamme; Gregor Weihs

Any characterization of a single-photon source is not complete without specifying its second-order degree of coherence, i.e., its g(2) function. An accurate measurement of such coherence functions commonly requires high-precision single-photon detectors, in whose absence only time-averaged measurements are possible. It is not clear, however, how the resulting time-averaged quantities can be used to properly characterize the source. In this paper, we investigate this issue for a heralded source of single photons that relies on continuous-wave parametric down-conversion. By accounting for major shortcomings of the source and the detectors—i.e., the multiple-photon emissions of the source, the time resolution of photodetectors and our chosen width of coincidence window—our theory enables us to infer the true source properties from imperfect measurements. Our theoretical results are corroborated by an experimental demonstration using a PPKTP crystal pumped by a blue laser that results in a single-photon generation rate about 1.2 millions per second per milliwatt of pump power. This work takes an important step towards the standardization of such heralded single-photon sources.


Physical Review X | 2017

Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond

Daniel Riedel; Immo Söllner; Brendan Shields; Sebastian Starosielec; Patrick Appel; Elke Neu; Patrick Maletinsky; Richard J. Warburton

The nitrogen-vacancy (NV) center in diamond has an optically addressable, highly coherent spin. However, an NV center even in high quality single-crystalline material is a very poor source of single photons: extraction out of the high-index diamond is inefficient, the emission of coherent photons represents just a few per cent of the total emission, and the decay time is large. In principle, all three problems can be addressed with a resonant microcavity. In practice, it has proved difficult to implement this concept: photonic engineering hinges on nano-fabrication yet it is notoriously difficult to process diamond without degrading the NV centers. We present here a microcavity scheme which uses minimally processed diamond, thereby preserving the high quality of the starting material, and a tunable microcavity platform. We demonstrate a clear change in the lifetime for multiple individual NV centers on tuning both the cavity frequency and anti-node position, a Purcell effect. The overall Purcell factor


Optical Materials Express | 2017

Engineering chiral light–matter interaction in photonic crystal waveguides with slow light

Sahand Mahmoodian; Kasper Prindal-Nielsen; Immo Söllner; Søren Stobbe; Peter Lodahl

F_{\rm P}=2.0


Physical Review B | 2017

Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide

Gabija Kiršanskė; Henri Thyrrestrup; Raphaël S. Daveau; Chris L. Dreeßen; Tommaso Pregnolato; Leonardo Midolo; Petru Tighineanu; Alisa Javadi; Søren Stobbe; Rüdiger Schott; Arne Ludwig; Andreas D. Wieck; Suk In Park; Jin D. Song; Andreas V. Kuhlmann; Immo Söllner; Matthias C. Löbl; Richard J. Warburton; Peter Lodahl

translates to a Purcell factor for the zero phonon line (ZPL) of

Collaboration


Dive into the Immo Söllner's collaboration.

Top Co-Authors

Avatar

Peter Lodahl

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Alisa Javadi

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Søren Stobbe

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne Ludwig

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge