Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Imre Farkas is active.

Publication


Featured researches published by Imre Farkas.


PLOS ONE | 2008

The Orexigenic Effect of Ghrelin Is Mediated through Central Activation of the Endogenous Cannabinoid System

Blerina Kola; Imre Farkas; Mirjam Christ-Crain; Gábor Wittmann; Francesca Lolli; Faisal Amin; Judith Harvey-White; Zsolt Liposits; George Kunos; Ashley B. Grossman; Csaba Fekete; Márta Korbonits

Introduction Ghrelin and cannabinoids stimulate appetite, this effect possibly being mediated by the activation of hypothalamic AMP-activated protein kinase (AMPK), a key enzyme in appetite and metabolism regulation. The cannabinoid receptor type 1 (CB1) antagonist rimonabant can block the orexigenic effect of ghrelin. In this study, we have elucidated the mechanism of the putative ghrelin-cannabinoid interaction. Methods The effects of ghrelin and CB1 antagonist rimonabant in wild-type mice, and the effect of ghrelin in CB1-knockout animals, were studied on food intake, hypothalamic AMPK activity and endogenous cannabinoid content. In patch-clamp electrophysiology experiments the effect of ghrelin was assessed on the synaptic inputs in parvocellular neurons of the hypothalamic paraventricular nucleus, with or without the pre-administration of a CB1 antagonist or of cannabinoid synthesis inhibitors. Results and Conclusions Ghrelin did not induce an orexigenic effect in CB1-knockout mice. Correspondingly, both the genetic lack of CB1 and the pharmacological blockade of CB1 inhibited the effect of ghrelin on AMPK activity. Ghrelin increased the endocannabinoid content of the hypothalamus in wild-type mice and this effect was abolished by rimonabant pre-treatment, while no effect was observed in CB1-KO animals. Electrophysiology studies showed that ghrelin can inhibit the excitatory inputs on the parvocellular neurons of the paraventricular nucleus, and that this effect is abolished by administration of a CB1 antagonist or an inhibitor of the DAG lipase, the enzyme responsible for 2-AG synthesis. The effect is also lost in the presence of BAPTA, an intracellular calcium chelator, which inhibits endocannabinoid synthesis in the recorded parvocellular neuron and therefore blocks the retrograde signaling exerted by endocannabinoids. In summary, an intact cannabinoid signaling pathway is necessary for the stimulatory effects of ghrelin on AMPK activity and food intake, and for the inhibitory effect of ghrelin on paraventricular neurons.


PLOS ONE | 2012

The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence.

Mayte Alvarez-Crespo; Karolina P. Skibicka; Imre Farkas; Csilla S. Molnár; Emil Egecioglu; Erik Hrabovszky; Zsolt Liposits; Suzanne L. Dickson

Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control) at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R) are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL) and ventromedial (LaVM) parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelins effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field), intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like) behaviors if food is not available.


Endocrinology | 2010

Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons

Imre Farkas; Imre Kalló; Levente Deli; Barbara Vida; Erik Hrabovszky; Csaba Fekete; Suzanne M. Moenter; Masahiko Watanabe; Zsolt Liposits

Cannabinoids suppress fertility via reducing hypothalamic GnRH output. γ-Aminobutyric acid (GABA)A receptor (GABAA-R)-mediated transmission is a major input to GnRH cells that can be excitatory. We hypothesized that cannabinoids act via inhibiting GABAergic input. We performed loose-patch electrophysiological studies of acute slices from adult male GnRH-green fluorescent protein transgenic mice. Bath application of type 1 cannabinoid receptor (CB1) agonist WIN55,212 decreased GnRH neuron firing rate. This action was detectable in presence of the glutamate receptor antagonist kynurenic acid but disappeared when bicuculline was also present, indicating GABAA-R involvement. In immunocytochemical experiments, CB1-immunoreactive axons formed contacts with GnRH neurons and a subset established symmetric synapses characteristic of GABAergic neurotransmission. Functional studies were continued with whole-cell patch-clamp electrophysiology in presence of tetrodotoxin. WIN55,212 decreased the frequency of GABAA-R-mediated miniature postsynaptic currents (mPSCs) (reflecting spontaneous vesicle fusion), which was prevented with the CB1 antagonist AM251, indicating collectively that activation of presynaptic CB1 inhibits GABA release. AM251 alone increased mPSC frequency, providing evidence that endocannabinoids tonically inhibit GABAA-R drive onto GnRH neurons. Increased mPSC frequency was absent when diacylglycerol lipase was blocked intracellularly with tetrahydrolipstatin, showing that tonic inhibition is caused by 2-arachidonoylglycerol production of GnRH neurons. CdCl2 in extracellular solution can maintain both action potentials and spontaneous vesicle fusion. Under these conditions, when endocannabinoid-mediated blockade of spontaneous vesicle fusion was blocked with AM251, GnRH neuron firing increased, revealing an endogenous endocannabinoid brake on GnRH neuron firing. Retrograde endocannabinoid signaling may represent an important mechanism under physiological and pathological conditions whereby GnRH neurons regulate their excitatory GABAergic inputs.


Journal of Immunology | 2003

Complement C5a Receptor-Mediated Signaling May Be Involved in Neurodegeneration in Alzheimer’s Disease

Imre Farkas; Mitsuo Takahashi; Atsuo Fukuda; Naoki Yamamoto; Hiroyasu Akatsu; Lajos Baranyi; Hisashi Tateyama; Takayuki Yamamoto; Noriko Okada; Hidechika Okada

In our earlier results, we demonstrated that cells expressing the complement C5aR are vulnerable since abnormal activation of C5aR caused apoptosis of these cells. In this study, we demonstrate that activation of C5aR by antisense homology box (AHB) peptides synthesized in multiple antigenic peptide form and representing putative interaction sites of the C5a/C5aR evoked calcium influx in TGW neuroblastoma cells. Dose-dependent inhibition of the response was found when the cells were pretreated with C5a, suggesting that C5aR was involved in this process. In addition, pretreatment with monomeric forms of the AHB peptides resulted in attenuation of the calcium signals, supporting the idea of the role of C5aR in this process. Cells of a neuron-rich primary culture and pyramidal cells of rat brain slices also responded to the AHB peptide activation with an increase in the intracellular calcium level, showing that calcium metabolism might be affected in these cells. TUNEL staining demonstrated that C5aR-mediated apoptosis could be induced both in cells of the primary culture as well as in cortical pyramidal neurons of the rat brain. In addition, we investigated expression of C5aR in the hippocampal and cortical neurons of human brains of healthy and demented patients using two anti-human C5aR Abs. Pyramidal cells of the hippocampus and cortex and granular cells of the hippocampus were immunopositive on staining. Although staining was also positive in the vascular dementia brain, it disappeared in the brain with Alzheimer’s disease. These results provide further support that C5aR may be involved in neurodegeneration.


Endocrinology | 2014

GLP-1 Receptor Stimulation of the Lateral Parabrachial Nucleus Reduces Food Intake: Neuroanatomical, Electrophysiological, and Behavioral Evidence

Jennifer E. Richard; Imre Farkas; Fredrik Anesten; Rozita H. Anderberg; Suzanne L. Dickson; Fiona M. Gribble; Frank Reimann; John-Olov Jansson; Zsolt Liposits; Karolina P. Skibicka

The parabrachial nucleus (PBN) is a key nucleus for the regulation of feeding behavior. Inhibitory inputs from the hypothalamus to the PBN play a crucial role in the normal maintenance of feeding behavior, because their loss leads to starvation. Viscerosensory stimuli result in neuronal activation of the PBN. However, the origin and neurochemical identity of the excitatory neuronal input to the PBN remain largely unexplored. Here, we hypothesize that hindbrain glucagon-like peptide 1 (GLP-1) neurons provide excitatory inputs to the PBN, activation of which may lead to a reduction in feeding behavior. Our data, obtained from mice expressing the yellow fluorescent protein in GLP-1-producing neurons, revealed that hindbrain GLP-1-producing neurons project to the lateral PBN (lPBN). Stimulation of lPBN GLP-1 receptors (GLP-1Rs) reduced the intake of chow and palatable food and decreased body weight in rats. It also activated lPBN neurons, reflected by an increase in the number of c-Fos-positive cells in this region. Further support for an excitatory role of GLP-1 in the PBN is provided by electrophysiological studies showing a remarkable increase in firing of lPBN neurons after Exendin-4 application. We show that within the PBN, GLP-1R activation increased gene expression of 2 energy balance regulating peptides, calcitonin gene-related peptide (CGRP) and IL-6. Moreover, nearly 70% of the lPBN GLP-1 fibers innervated lPBN CGRP neurons. Direct intra-lPBN CGRP application resulted in anorexia. Collectively, our molecular, anatomical, electrophysiological, pharmacological, and behavioral data provide evidence for a functional role of the GLP-1R for feeding control in the PBN.


Psychoneuroendocrinology | 2008

Lasting changes in social behavior and amygdala function following traumatic experience induced by a single series of foot-shocks

Éva Mikics; Mate Toth; Patricia Varju; Balázs Gereben; Zsolt Liposits; Mária Ashaber; József Halász; István Barna; Imre Farkas; József Haller

Neuronal plasticity within the amygdala mediates many behavioral effects of traumatic experience, and this brain region also controls various aspects of social behavior. However, the specific involvement of the amygdala in trauma-induced social deficits has never been systematically investigated. We exposed rats to a single series of electric foot-shocks--a frequently used model of trauma--and studied their behavior in the social avoidance and psychosocial stimulation tests (non-contact versions of the social interaction test) at different time intervals. Social interaction-induced neuronal activation patterns were studied in the prefrontal cortex (orbitofrontal and medial), amygdala (central, medial, and basolateral), dorsal raphe and locus coeruleus. Shock exposure markedly inhibited social behavior in both tests. The effect lasted at least 4 weeks, and amplified over time. As shown by c-Fos immunocytochemistry, social interactions activated all the investigated brain areas. Traumatic experience exacerbated this activation in the central and basolateral amygdala, but not in other regions. The tight correlation between the social deficit and amygdala activation patterns suggest that the two phenomena were associated. A real-time PCR study showed that CRF mRNA expression in the amygdala was temporarily reduced 14, but not 1 and 28 days after shock exposure. In contrast, amygdalar NK1 receptor mRNA expression increased throughout. Thus, the trauma-induced social deficits appear to be associated with, and possibly caused by, plastic changes in fear-related amygdala subdivisions.


PLOS ONE | 2013

Ghrelin Decreases Firing Activity of Gonadotropin- Releasing Hormone (GnRH) Neurons in an Estrous Cycle and Endocannabinoid Signaling Dependent Manner

Imre Farkas; Csaba Vastagh; Miklós Sárvári; Zsolt Liposits

The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R) in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca2+-imaging revealed a ghrelin-triggered increase of the Ca2+-content in GT1-7 neurons kept in a steroid-free medium, which was abolished by GHS-R-antagonist JMV2959 (10µM) suggesting direct action of ghrelin. Estradiol (1nM) eliminated the ghrelin-evoked rise of Ca2+-content, indicating the estradiol dependency of the process. Expression of GHS-R mRNA was then confirmed in GnRH-GFP neurons of transgenic mice by single cell RT-PCR. Firing rate and burst frequency of GnRH-GFP neurons were lower in metestrous than proestrous mice. Ghrelin (40nM-4μM) administration resulted in a decreased firing rate and burst frequency of GnRH neurons in metestrous, but not in proestrous mice. Ghrelin also decreased the firing rate of GnRH neurons in males. The ghrelin-evoked alterations of the firing parameters were prevented by JMV2959, supporting the receptor-specific actions of ghrelin on GnRH neurons. In metestrous mice, ghrelin decreased the frequency of GABAergic mPSCs in GnRH neurons. Effects of ghrelin were abolished by the cannabinoid receptor type-1 (CB1) antagonist AM251 (1µM) and the intracellularly applied DAG-lipase inhibitor THL (10µM), indicating the involvement of retrograde endocannabinoid signaling. These findings demonstrate that ghrelin exerts direct regulatory effects on GnRH neurons via GHS-R, and modulates the firing of GnRH neurons in an ovarian-cycle and endocannabinoid dependent manner.


Neurochemistry International | 2007

Estrogen modulates potassium currents and expression of the Kv4.2 subunit in GT1-7 cells.

Imre Farkas; Patricia Varju; Zsolt Liposits

The proper maintenance of reproduction requires the pulsatile secretion of gonadotropin-releasing hormone (GnRH), which is ensured by synchronized periodic firing of multiple GnRH neurons. Both hormone secretion and electrophysiological properties of GnRH cells are influenced by estrogen. The impact of 17beta-estradiol treatment on the function of voltage gated A- and K-type potassium channels, known modulators of firing rate, was therefore examined in our experiments using immortalized GnRH-producing GT1-7 neurons. Whole cell patch clamp recordings showed the absence of the A-type current in GT1-7 cells cultured in estrogen-free medium and after 8h 17beta-estradiol treatment. Exposure of the cells to 17beta-estradiol for 24 and 48 h, respectively, resulted in the appearance of the A-type current. The induction of the A-type current by 17beta-estradiol was dose-related (50 pM to 15 nM range). In contrast, the K-type potassium current was apparent in the estrogen-free environment and 17beta-estradiol administration significantly decreased its amplitude. Co-administration of 17beta-estradiol and estrogen receptor blocker, Faslodex (ICI 182,780; 1 microM) abolished the occurrence of the A-type current. Real-time PCR data demonstrated that expression of the Kv4.2 subunit of the A-type channel was low at 0, 0.5, 2 and 8h, peaked at 24h and diminished at 48 h 17beta-estradiol treatment (15 nM). These data indicate that potassium channels of GT1-7 neurons are regulated by estrogen a mechanism that might contribute to modulation of firing rate and hormone secretion in GnRH neurons.


Neuroreport | 1999

C5a receptor expression by TGW neuroblastoma cells

Imre Farkas; Lajos Baranyi; Yoko Kaneko; Zsolt Liposits; Takayuki Yamamoto; Hidechika Okada

We recently reported that not only lymphoid cells, but cells of neuronal origin may harbor C5a receptors (C5aR) as suggested by results of RT-PCR testing and that an apoptotic pathway is associated with the C5aR. To determine whether C5aR is expressed as an integral membrane protein, we generated mono- and polyclonal anti-C5aR antibodies. Flow cytometry showed a low-level expression of C5aR in TGW neuroblastoma cells. Epitope mapping suggested that a conformation change in C5aR occurs when exposed to C5a. Although an aphysiologically high concentration of C5a is necessary for inducing a transient increase in the intracellular Ca2+ level, TGW cells do employ the signal transduction pathway associated with C5aR, suggesting that these cells may serve as putative model for C5aR-expressing neurons.


Neurochemistry International | 2008

Estrogen enhances expression of the complement C5a receptor and the C5a-agonist evoked calcium influx in hormone secreting neurons of the hypothalamus

Imre Farkas; Patricia Varju; Emese Szabó; Erik Hrabovszky; Noriko Okada; Hidechika Okada; Zsolt Liposits

In the present study we examined presence of the complement C5a receptor (C5aR) in hypothalamic neurosecretory neurons of the rodent brain and effect of estrogen on C5aR expression. Whole cell patch clamp measurements revealed that magnocellular neurons in the supraoptic and paraventricular nuclei of hypothalamic slices of the rats responded to the C5aR-agonist PL37-MAP peptide with calcium ion current pulses. Gonadotropin-releasing hormone (GnRH) producing neurons in slices of the preoptic area of the mice also reacted to the peptide treatment with inward calcium current. PL37-MAP was able to evoke the inward ion current of GnRH neurons in slices from ovariectomized animals. The amplitude of the inward pulses became higher in slices obtained from 17beta-estradiol (E2) substituted mice. Calcium imaging experiments demonstrated that PL37-MAP increased the intracellular calcium content in the culture of the GnRH-producing GT1-7 cell line in a concentration-dependent manner. Calcium imaging also showed that E2 pretreatment elevated the PL37-MAP evoked increase of the intracellular calcium content in the GT1-7 cells. The estrogen receptor blocker Faslodex in the medium prevented the E2-evoked increase of the PL37-MAP-triggered elevation of the intracellular calcium content in the GT1-7 cells demonstrating that the effect of E2 might be related to the presence of estrogen receptor. Real-time PCR experiments revealed that E2 increased the expression of C5aR mRNA in GT1-7 neurons, suggesting that an increased C5aR synthesis could be involved in the estrogenic modulation of calcium response. These data indicate that hypothalamic neuroendocrine neurons can integrate immune and neuroendocrine functions. Our results may serve a better understanding of the inflammatory and neurodegeneratory diseases of the hypothalamus and the related neuroendocrine and autonomic compensatory responses.

Collaboration


Dive into the Imre Farkas's collaboration.

Top Co-Authors

Avatar

Zsolt Liposits

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Erik Hrabovszky

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Csaba Vastagh

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Csaba Fekete

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Miklós Sárvári

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Barbara Vida

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dávid Csercsik

Pázmány Péter Catholic University

View shared research outputs
Top Co-Authors

Avatar

Gábor Szederkényi

Pázmány Péter Catholic University

View shared research outputs
Top Co-Authors

Avatar

Katalin M. Hangos

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge