Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Imtiaz Rangwala is active.

Publication


Featured researches published by Imtiaz Rangwala.


Climatic Change | 2012

Climate change in mountains: a review of elevation-dependent warming and its possible causes

Imtiaz Rangwala; James R. Miller

Available observations suggest that some mountain regions are experiencing seasonal warming rates that are greater than the global land average. There is also evidence from observational and modeling studies for an elevation-dependent climate response within some mountain regions. Our understanding of climate change in mountains, however, remains challenging owing to inadequacies in observations and models. In fact, it is still uncertain whether mountainous regions generally are warming at a different rate than the rest of the global land surface, or whether elevation-based sensitivities in warming rates are prevalent within mountains. We review studies of four high mountain regions – the Swiss Alps, the Colorado Rocky Mountains, the Tibetan Plateau/Himalayas, and the Tropical Andes – to examine questions related to the sensitivity of climate change to surface elevation. We explore processes that could lead to enhanced warming within mountain regions and possible mechanisms that can produce altitudinal gradients in warming rates on different time scales. A conclusive understanding of these responses will continue to elude us in the absence of a more comprehensive network of climate monitoring in mountains.


Geophysical Research Letters | 2009

Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor

Imtiaz Rangwala; James R. Miller; Ming Xu

The Tibetan Plateau has warmed most rapidly during the winter months in the latter half of the 20th century. Changes in surface specific humidity and their effect on changes in downward longwave radiation (DLR) at the surface are examined to evaluate the pattern of seasonal warming at different elevations over the plateau between 1961 and 2000. We use observed seasonal changes in specific humidity to calculate the changes in DLR over the Tibetan Plateau. We find that increases in surface humidity during winter and spring months produce relatively large increases in DLR when the specific humidity is 2.5 g/kg or less, which usually occurs during the colder months and at higher altitudes. These increases in surface water vapor and the related changes in DLR appear to be part of the reason for the prominent winter warming trend observed over the plateau between 1961 and 2000. Citation: Rangwala, I., J. R. Miller, and M. Xu (2009), Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor, Geophys. Res. Lett., 36, L06703, doi:10.1029/2009GL037245.


Environmental Research Letters | 2013

Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models

Imtiaz Rangwala; Eric Sinsky; James R. Miller

We use output from global climate models available from the Coupled Model Intercomparison Project Phase 5 (CMIP5) for three different greenhouse gas emission scenarios to investigate whether the projected warming in mountains by the end of the 21st century is significantly different from that in low elevation regions. To remove the effects of latitudinal variation in warming rates, we focus on seasonal changes in the mid-latitude band of the northern hemisphere between 27.5 N and 40 N, where the two major mountain systems are the Tibetan Plateau/Himalayas in Asia and the Rocky Mountains in the United States. Results from the multi-model ensemble indicate that warming rates in mountains will be enhanced relative to non-mountain regions at the same latitude, particularly during the cold season. The strongest correlations of enhanced warming with elevation are obtained for the daily minimum temperature during winter, with the largest increases found for the Tibetan Plateau/Himalayas. The model projections indicate that this occurs, in part, because of proportionally greater increases in downward longwave radiation at higher elevations in response to increases in water vapor. The mechanisms for enhanced increases in winter and spring maximum temperatures in the Rockies appear to be influenced more by increases in surface absorption of solar radiation owing to a reduced snow cover. Furthermore, the amplification of warming with elevation is greater for a higher greenhouse gas emission scenario.


Climate Dynamics | 2012

Mid-21st century projections in temperature extremes in the southern Colorado Rocky Mountains from regional climate models

Imtiaz Rangwala; Joseph J. Barsugli; Karen Cozzetto; Jason C. Neff; James Prairie

This study analyzes mid-21st century projections of daily surface air minimum (Tmin) and maximum (Tmax) temperatures, by season and elevation, over the southern range of the Colorado Rocky Mountains. The projections are from four regional climate models (RCMs) that are part of the North American Regional Climate Change Assessment Program (NARCCAP). All four RCMs project 2°C or higher increases in Tmin and Tmax for all seasons. However, there are much greater (>3°C) increases in Tmax during summer at higher elevations and in Tmin during winter at lower elevations. Tmax increases during summer are associated with drying conditions. The models simulate large reductions in latent heat fluxes and increases in sensible heat fluxes that are, in part, caused by decreases in precipitation and soil moisture. Tmin increases during winter are found to be associated with decreases in surface snow cover, and increases in soil moisture and atmospheric water vapor. The increased moistening of the soil and atmosphere facilitates a greater diurnal retention of the daytime solar energy in the land surface and amplifies the longwave heating of the land surface at night. We hypothesize that the presence of significant surface moisture fluxes can modify the effects of snow-albedo feedback and results in greater wintertime warming at night than during the day.


Arctic, Antarctic, and Alpine Research | 2010

Twentieth Century Temperature Trends in Colorado's San Juan Mountains

Imtiaz Rangwala; James R. Miller

Abstract We examine trends in surface air temperature for the San Juan Mountain region in southwestern Colorado from 1895 to 2005. Observations from both National Weather Service (NWS) and Snow Telemetry (SNOTEL) sites are analyzed. Results show a net warming of 1 °C between 1895 and 2005. Most of this warming occurred between 1990 and 2005, when the region experienced rapid and secular increases in temperature. Between 1950 and 1985, there was a cooling trend in the region during which there were significant decreases in the maximum temperature (Tmax) and almost no trend in the minimum temperature (Tmin). This cooling trend appears to be, in part, associated with increases in atmospheric aerosols. Between 1990 and 2005, the large increases in temperature anomalies are strongly correlated at the NWS and SNOTEL sites. Annual increases in Tmax and Tmin are similar between 1990 and 2005; however, they generally show greater increases during summer and winter, respectively. Spatially, there are similar increases in Tmax and Tmin except in the central mountain region, where the increases in Tmin are larger and started earlier.


PLOS ONE | 2017

Drought risk assessment under climate change is sensitive to methodological choices for the estimation of evaporative demand

Candida F. Dewes; Imtiaz Rangwala; Joseph J. Barsugli; Michael T. Hobbins; Sanjiv Kumar; M. deCastro

Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models’ expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM, and standardization of time series influence the estimation of E0. These methodological choices yield different assessments of spatio-temporal variability in E0 and different trends in 21st century drought risk. First, we estimate E0 using three widely used E0 formulations: Penman-Monteith; Hargreaves-Samani; and Priestley-Taylor. Our analysis, which primarily focuses on the May-September warm-season period, shows that E0 climatology and its spatial pattern differ substantially between these three formulations. Overall, we find higher magnitudes of E0 and its interannual variability using Penman-Monteith, in particular for regions like the Great Plains and southwestern US where E0 is strongly influenced by variations in wind and relative humidity. When examining projected changes in E0 during the 21st century, there are also large differences among the three formulations, particularly the Penman-Monteith relative to the other two formulations. The 21st century E0 trends, particularly in percent change and standardized anomalies of E0, are found to be sensitive to the long-term mean value and the amplitude of interannual variability, i.e. if the magnitude of E0 and its interannual variability are relatively low for a particular E0 formulation, then the normalized or standardized 21st century trend based on that formulation is amplified relative to other formulations. This is the case for the use of Hargreaves-Samani and Priestley-Taylor, where future E0 trends are comparatively much larger than for Penman-Monteith. When comparing Penman-Monteith E0 responses between different choices of input variables related to wind speed, surface roughness, and net radiation, we found differences in E0 trends, although these choices had a much smaller influence on E0 trends than did the E0 formulation choices. These methodological choices and specific climate model selection, also have a large influence on the estimation of trends in standardized drought indices used for drought assessment operationally. We find that standardization tends to amplify divergences between the E0 trends calculated using different E0 formulations, because standardization is sensitive to both the climatology and amplitude of interannual variability of E0. For different methodological choices and GCM output considered in estimating E0, we examine potential sources of uncertainty in 21st century trends in the Standardized Precipitation Evapotranspiration Index (SPEI) and Evaporative Demand Drought Index (EDDI) over selected regions of the CONUS to demonstrate the practical implications of these methodological choices for the quantification of drought risk under climate change.


Bulletin of the American Meteorological Society | 2017

Advancing Science and Services during the 2015-16 El Niño: The NOAA El Niño Rapid Response Field Campaign

Randall M. Dole; J. Ryan Spackman; Matthew Newman; Gilbert P. Compo; Catherine A. Smith; Leslie M. Hartten; Joseph J. Barsugli; Robert S. Webb; Martin P. Hoerling; Robert Cifelli; Klaus Wolter; Christopher D. Barnet; Maria Gehne; Ronald Gelaro; George N. Kiladis; Scott Abbott; John Albers; John M. Brown; Christopher J. Cox; Lisa S. Darby; Gijs de Boer; Barbara DeLuisi; Juliana Dias; Jason Dunion; Jon Eischeid; Christopher W. Fairall; Antonia Gambacorta; Brian K. Gorton; Andrew Hoell; Janet M. Intrieri

AbstractForecasts by mid-2015 for a strong El Nino during winter 2015/16 presented an exceptional scientific opportunity to accelerate advances in understanding and predictions of an extreme climat...


Environmental Research Letters | 2014

Comparison of the Sensitivity of Surface Downward Longwave Radiation to Changes in Water Vapor at Two High Elevation Sites

Yonghua Chen; Catherine M. Naud; Imtiaz Rangwala; Christopher C Landry; James R. Miller

Among the potential reasons for enhanced warming rates in many high elevation regions is the nonlinear relationship between surface downward longwave radiation (DLR) and specific humidity (q). In this study we use ground-based observations at two neighboring high elevation sites in Southwestern Colorado that have different local topography and are 1.3 km apart horizontally and 348 m vertically. We examine the spatial consistency of the sensitivities (partial derivatives) of DLR with respect to changes in q, and the sensitivities are obtained from the Jacobian matrix of a neural network analysis. Although the relationship between DLR and q is the same at both sites, the sensitivities are higher when q is smaller, which occurs more frequently at the higher elevation site. There is a distinct hourly distribution in the sensitivities at both sites especially for high sensitivity cases, although the range is greater at the lower elevation site. The hourly distribution of the sensitivities relates to that of q. Under clear skies during daytime, q is similar between the two sites, however under cloudy skies or at night, it is not. This means that the DLR–q sensitivities are similar at the two sites during daytime but not at night, and care must be exercised when using data from one site to infer the impact of water vapor feedbacks at another site, particularly at night. Our analysis suggests that care should be exercised when using the lapse rate adjustment to infill high frequency data in a complex topographical region, particularly when one of the stations is subject to cold air pooling as found here.


Archive | 2012

Potential Climate and Hydrological Changes in the Aral Sea Region

James R. Miller; Imtiaz Rangwala; Debjani Ghatak

This chapter describes the climatic setting of the Aral Sea region, investigates how the climate might change during the 21st century, and discusses potential impacts on water resources. Temperature and precipitation fields are analyzed to describe the mean climate for the Aral Sea region. Composite analysis has been employed on the precipitation field from the Global Precipitation Climatology Project (GPCP v2.2) to assess the spatial pattern of changes in precipitation during the last several decades. Furthermore, temperature and precipitation projections available from the 2007 Intergovernmental Panel on Climate Change report are synthesized to examine the nature of climate change during this century. Cold season precipitation has increased during recent decades, particularly over the mountainous terrain east of the Aral Sea. Climate models also project increases (5−20%) in winter precipitation during the 21st century; however, several models suggest decreases (0 to −15%) in precipitation during summer. Despite the increases in cold season precipitation, the large increases in temperature (4°C) during the 21st century are likely to cause increased evaporation which could exacerbate the regional water budget deficit. This may constrain the water supply in the region, particularly during summer and autumn when water demand is highest. To fully understand the impacts of future climate change on regional water resources, hydrologic models that include anthropogenic management of water will be required.


Nature Climate Change | 2015

Elevation-dependent warming in mountain regions of the world

Nick Pepin; Raymond S. Bradley; Henry F. Diaz; Michel Baraer; E. B. Caceres; Nathan Forsythe; Hayley J. Fowler; Gregory Greenwood; M. Z. Hashmi; Xiaodong Liu; James R. Miller; Liang Ning; A. Ohmura; E. Palazzi; Imtiaz Rangwala; W. Schöner; Igor Severskiy; Maria Shahgedanova; M. B. Wang; S. N. Williamson; D. Q. Yang

Collaboration


Dive into the Imtiaz Rangwala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph J. Barsugli

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Sinsky

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Gary L. Russell

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

James Prairie

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Michael T. Hobbins

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge