Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where In-Pil Jung is active.

Publication


Featured researches published by In-Pil Jung.


European Journal of Medicinal Chemistry | 2015

Synthesis, crystal structure and biological evaluation of substituted quinazolinone benzoates as novel antituberculosis agents targeting acetohydroxyacid synthase.

Wei Lu; Irshad Ahmed Baig; Huijie Sun; Changjun Cui; Rui Guo; In-Pil Jung; Di Wang; Mei Dong; Moon-Young Yoon; Jian-Guo Wang

Acetohydroxyacid synthase (AHAS) catalyzes the first essential biosynthetic step of branched-chain amino acids and is a biologically safe target against Mycobacterium tuberculosis (MTB). In our previous research, we used virtual screening to identify some novel AHAS inhibitors as potent antituberculosis agents. In this study, we synthesized twenty-four additional quinazolinone benzoates and explored their antitubercular activity. Five of these compounds displayed significant MTB-AHAS inhibition and their IC50 values were determined to be in the range of 6.50 μM-12.08 μM. Importantly, these compounds also exhibited strong in vitro activity (MICs in the range of 2.5-10 mg/L) and intracellular activity against clinically isolated extensively drug-resistant strains of M. tuberculosis. Taken together, these results indicated that the quinazolinone benzoate compounds should be regarded as promising lead compounds for the development of potent antituberculosis drugs with a novel mode of action.


Scientific Reports | 2017

Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor

Na-Reum Ha; In-Pil Jung; Im-Joung La; Ho-Sup Jung; Moon-Young Yoon

Overuse of antibiotics has caused serious problems, such as appearance of super bacteria, whose accumulation in the human body through the food chain is a concern. Kanamycin is a common antibiotic used to treat diverse infections; however, residual kanamycin can cause many side effects in humans. Thus, development of an ultra-sensitive, precise, and simple detection system for residual kanamycin in food products is urgently needed for food safety. In this study, we identified kanamycin-binding aptamers via a new screening method, and truncated variants were analyzed for optimization of the minimal sequence required for target binding. We found various aptamers with high binding affinity from 34.7 to 669 nanomolar Kdapp values with good specificity against kanamycin. Furthermore, we developed a reduced graphene oxide (RGO)-based fluorescent aptasensor for kanamycin detection. In this system, kanamycin was detected at a concentration as low as 1 pM (582.6 fg/mL). In addition, this method could detect kanamycin accurately in kanamycin-spiked blood serum and milk samples. Consequently, this simple, rapid, and sensitive kanamycin detection system with newly structural and functional analysis aptamer exhibits outstanding detection compared to previous methods and provides a new possibility for point of care testing and food safety.


Enzyme and Microbial Technology | 2015

Functional evaluation of residues in the herbicide-binding site of Mycobacterium tuberculosis acetohydroxyacid synthase by site-directed mutagenesis

In-Pil Jung; Jun-Haeng Cho; Bon-Sung Koo; Moon-Young Yoon

Mycobacterium tuberculosis acetohydroxyacid synthase (M. tuberculosis AHAS) has been proposed to bean essential target for novel herbicide- and chemical-based antibacterial agents. Therefore, here we investigated the roles of multiple conserved herbicide-binding site residues (R318, A146, Q148, M512, and V513) in M. tuberculosis AHAS through site-directed mutagenesis by characterizing the kinetic parameters and herbicide sensitivities of various point mutants. Interestingly, all mutant enzymes showed significantly altered kinetic parameters, specifically reduced affinity towards both the substrate and cofactor. Importantly, mutation of R318 led to a complete loss of AHAS activity, indicating a key role for this residue in substrate binding. Furthermore, all mutants demonstrated significant herbicide resistance against chlorimuron ethyl (CE), with several-fold higher IC50 than that of wild type AHAS. Docking analysis also indicated that binding of CE was slightly affected upon mutation of these residues. Taken together, these data suggest that the residues examined here mediate CE binding and may also be important for the catalytic activity of AHAS. This study will pave the way for future structure-function studies of CE and will also aid the development of novel anti-tuberculosis agents based on this chemical scaffold.


International Journal of Antimicrobial Agents | 2016

Development of potent chemical antituberculosis agents targeting Mycobacterium tuberculosis acetohydroxyacid synthase

In-Pil Jung; Na-Reum Ha; Sang-Choon Lee; Sung-Weon Ryoo; Moon-Young Yoon

Mycobacterium tuberculosis acetohydroxyacid synthase (MTB-AHAS) has been suggested as a crucial target for antibacterial agents. High-throughput screening of a chemical library was performed to identify potent new inhibitors of MTB-AHAS. Among the 6800 tested compounds, 15 were identified as potent inhibitors, exhibiting >80-90% inhibition of in vitro MTB-AHAS activity at a fixed concentration of 20 µM. Five compounds belonging to the triazolopyrimidine structural class showed greater inhibition potency, with a half-maximum inhibition concentration (IC50 value) in the low micromolar range (0.4-1.24 µM). Furthermore, potent inhibitors demonstrated non-competitive, uncompetitive or mixed-competitive inhibition. Molecular docking experiments with these potent chemicals using a homology model of MTB-AHAS indicated hydrophobic and hydrogen bond interactions with some key herbicide binding site residues with binding energies (ΔG) of -8.04 to -10.68 Kcal/mol, respectively. The binding modes were consistent with inhibition mechanisms, as the chemicals were oriented outside the active site. Importantly, these potent inhibitors demonstrated significant growth inhibition of various clinically isolated multidrug-resistant and extensively drug-resistant M. tuberculosis strains, with 50% minimum inhibitory concentrations (MIC50 values) ranging from 0.2 µg/mL to 0.8 µg/mL, which resemble the MICs of conventional drugs for tuberculosis (isoniazid, 0.1 µg/mL; rifampicin, 0.4 µg/mL). Thus, the identified potent inhibitors show potential as scaffolds for further in vivo studies and might provide an impetus for the development of strong antituberculosis agents targeting MTB-AHAS.


International Journal of Biological Macromolecules | 2017

Mutation analysis of the interactions between Mycobacterium tuberculosis caseinolytic protease C1 (ClpC1) and ecumicin

In-Pil Jung; Na-Reum Ha; A-Ru Kim; Sang-Heon Kim; Moon-Young Yoon

Ecumicin is a well-known and potent inhibitor of Mycobacterium tuberculosis. Although the target of ecumicin is caseinolytic protease C1 (ClpC1), the exact mechanism by which ecumicin inhibits ClpC1 has not been identified. To analyze ecumicins action on ClpC1, site-directed mutagenesis was performed on its binding site. The estimated binding residues within ClpC1 to ecumicin were selected via in silico analysis using molecular docking. The selected residues were mutated by site-directed mutagenesis and the effects on ecumicin binding were analyzed. Mutation at the R83 residue, especially the R83A mutation, in ClpC1 resulted in strong resistance to ATPase activation and inhibition of proteolytic activity. In addition, binding of ecumicin to the R83A ClpC1 N-terminal domain (residues 1-145) was not observed in native gel analysis. These results reveal that the R83 residue plays an important role in the binding of ecumicin. This result provides a basis for the development of an anti-tuberculosis agent based on ecumicin derivatives.


International Journal of Biological Macromolecules | 2015

Mutational analysis of critical residues of FAD-independent catabolic acetolactate synthase from Enterococcus faecalis V583.

Sang-Choon Lee; In-Pil Jung; Irshad Ahmed Baig; Pham Ngoc Chien; Im-Joung La; Moon-Young Yoon

Catabolic acetolactate synthase (cALS) from Enterococcus faecalis is a FAD-independent enzyme, which catalyzes the condensation of two molecules of pyruvate to produce acetolactate. Mutational and kinetic analyses of variants suggested the importance of H111, Q112, and Q411 residues for catalysis in cALS. The wild-type and variants were expressed as equally soluble proteins and co-migrated to a size of 60 kDa on SDS-PAGE. Importantly, H111 in cALS, which is widely present as phenylalanine in many other ThDP-dependent enzymes, plays a crucial role in substrate binding. Interestingly, the H111 variants, H111R and H111F, demonstrated altered specific activity of H111 variants with 17- and 26-fold increases in Km, respectively, compared to wild-type cALS. Furthermore, Q112 variants, Q112E, Q112N, and Q112V, exhibited significantly lower specific activity with 70-, 15-, and 10-fold higher Ks for ThDP, respectively. In the case of Q411, the variant Q411E showed a 10-fold rise in Km and a 20-fold increase in Ks for ThDP. Further, the molecular docking results indicated that the binding mode of ThDP was slightly affected in the variants of cALS. Based on these results, we suggest that H111 plays a role in substrate binding, and further suggest that Q112 and Q411 might be involved in ThDP binding of cALS.


Journal of Molecular Recognition | 2018

Development of a ssDNA aptamer system with reduced graphene oxide (rGO) to detect nonylphenol ethoxylate in domestic detergent

A-Ru Kim; Na-Reum Ha; In-Pil Jung; Sang-Heon Kim; Moon-Young Yoon

Endocrine‐disrupting chemicals are a major public health problem throughout the world. In the human body, these compounds functionalize the same as sexual hormones, inducing precocious puberty, gynecomastia, etc. To help prevent this occurrence, a simple detection system is needed. In this study, a nonylphenol ethoxylate (NPE)‐specific aptamer was selected by reduced graphene oxide‐systematic evolution of ligands by exponential enrichment. A random ssDNA library was incubated with rGO for adsorption, followed by elution with the target molecule. As a result of screening, a DNA aptamer was found that specifically bounds to the target with high binding affinity (Kd = 100.9 ± 13.2 nM) and had a low limit of detection (LOD = 696 pM). Furthermore, this NPE‐binding aptamer bounds selectively to the target. Characterization of the aptamer was confirmed by measuring the fluorescence signal recovery from rGO. In addition, detection of NPE was performed with several water samples, and the detection accuracy was 100 ± 10%. From these results, we expect that this aptamer could be applied to an on‐site detection system for NPE in industrial sites or domestic fields.


Archives of Biochemistry and Biophysics | 2018

Inhibition of anthrax lethal factor by ssDNA aptamers

Mieke Lahousse; Hae-Chul Park; Sang-Choon Lee; Na-Reum Ha; In-Pil Jung; Sara R. Schlesinger; Kaylin Shackelford; Moon-Young Yoon; Sung-Kun Kim

Anthrax is caused by Bacillus anthracis, a bacterium that is able to secrete the toxins protective antigen, edema factor and lethal factor. Due to the high level of secretion from the bacteria and its severe virulence, lethal factor (LF) has been sought as a biomarker for detecting bacterial infection and as an effective target to neutralize toxicity. In this study, we found three aptamers, and binding affinity was determined by fluorescently labeled aptamers. One of the aptamers exhibited high affinity, with a Kd value of 11.0 ± 2.7 nM, along with low cross reactivity relative to bovine serum albumin and protective antigen. The therapeutic functionality of the aptamer was examined by assessing the inhibition of LF protease activity against a mitogen-activated protein kinase kinase. The aptamer appears to be an effective inhibitor of LF with an IC50 value of 15 ± 1.5 μM and approximately 85% cell viability, suggesting that this aptamer provides a potential clue for not only development of a sensitive diagnostic device of B. anthracis infection but also the design of novel inhibitors of LF.


Analytical Biochemistry | 2017

Development of a ssDNA aptamer for detection of residual benzylpenicillin

A-Young Lee; Na-Reum Ha; In-Pil Jung; Sang-Heon Kim; A-Ru Kim; Moon-Young Yoon


Process Biochemistry | 2017

Paper chip-based colorimetric sensing assay for ultra-sensitive detection of residual kanamycin

Na-Reum Ha; In-Pil Jung; Sang-Heon Kim; A-Ru Kim; Moon-Young Yoon

Collaboration


Dive into the In-Pil Jung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bon-Sung Koo

Rural Development Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge