In-Seok Yoon
Induk University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by In-Seok Yoon.
Advances in Materials Science and Engineering | 2012
In-Seok Yoon
For enhancing the service life of concrete structures, it is very important to minimize crack at surface. Even if these cracks are very small, the problem is to which extend these cracks may jeopardize the durability of these decks. It was proposed that crack depth corresponding with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It was necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. This study is devoted to examine the effect of high strength concrete and reinforcement of steel fiber on chloride penetration through cracks. High strength concrete is regarded as an excellent barrier to resist chloride penetration. However, durability performance of cracked high strength concrete was reduced seriously up to that of ordinary cracked concrete. Steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly. Meanwhile, surface treatment systems are put on the surface of the concrete in order to seal the concrete. The key-issue is to which extend a sealing is able to ensure that chloride-induced corrosion can be prevented. As a result, penetrant cannot cure cracks, however, coating and combined treatment can prevent chloride from flowing in concrete with maximum crack width of 0.06 mm and 0.08 mm, respectively.
Journal of The Korea Concrete Institute | 2003
Chang-Soo Lee; In-Seok Yoon
The most common deteriorating processes of concrete structures are carbonation and chloride ion ingress. Many concrete structures have been suffered from chloride ions diffusion or carbonation induced reinforcement corrosion damage and many studies have been done on it. However, those studies were confined mostly to the single deterioration of carbonation or chloride attack only, although actual environment is rather of combined conditions. In case of many in-situ concrete structures, deterioration happened more for the case of combined attack than the single case of carbonation or chloride attack. In this paper, chloride profiles of carbonated concrete is predicted by considering two layer composite model, which is based on Ficks 2nd law. From the experimental result on combined deterioration of chloride and carbonation, it was examined that high chloride concentration was built up to 3∼5 mm over depth from carbonation depth. The analytical modeling of chloride diffusion was suggested to depict the relative influence of the carbonation depth. The diffusion coefficients of carbonation concrete and uncarbonated concrete with elapsed time were considered in this modeling.
Journal of The Korea Concrete Institute | 2009
In-Seok Yoon
Permeability coefficient of concrete is a substaintial key parameter for understanding the durability performance of concrete and its microstructural densification. Many researches for the issue have been accomplished, however, it is very rare to deal with the theoretical study on permeability coefficient in connection with carbonation of concrete and the the effect of vol- umetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. The purpose of this study is to establish a fundamental approach to compute the permeability coefficeint of (non)car- bonated concrete. When simulating a microstructural characteristics as a starting point for deriving a model for the permeability coefficient by the numerical simulation program for cementitious materials, HYMOSTRUC, a more realistic formulation can be achieved. For several compositions of cement pastes, the permeability coefficient was calculated with the analytical formulation, followed by a microstructure-based model. Emphasis was on the microstructural changes and its effective change of the per- meability coefficient of carbonated concrete. For carbonated concrete, reduced porosity was calculated and this was used for cal- culating the permeability coefficeint. The computational result was compared with experimental outcome.
Journal of The Korea Concrete Institute | 2007
In-Seok Yoon
Critical chloride content for corrosion initiation is a crucial parameter in determining the durability and integrity of reinforced concrete structures, however, the value is still ambiguous. Most of the studies reporting critical threshold chloride content have involved the experimental measurement of the average amount of the total chloride content at arbitrary time. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on critical threshold chloride content. Furthermore, the studies have tried to define the critical chloride content within the scope of their experimental concrete mix proportion at arbitrary time. However, critical chloride content for corrosion initiation is known to be affected by a lot of factors including cement content, type of binder, chloride binding, concentration of hydroxyl ions, and so on. It is necessary to define the unified formulation to express the critical chloride content for various mix proportions of concrete. The purpose of this study is to establish an analytical formulation of the critical chloride content of concrete. In this formulation, affecting factors, such as mix proportion, environment, chemical evolution of pore solution with elapsed time, carbonation of concrete and so on are taken into account. Based on the Goudas experimental results, critical chloride content is defined as a function of vs. in pore solution. This is expressed as free chloride content with mass unit to consider time evolution of content in pore solution using the numerical simulation programme of cementitious materials, HYMOSTRUC. The result was compared with other experimental studies and various codes. It is believed that the approach suggested in this study can provide a good solution to determine the reasonable critical chloride content with original source of chloride ions, for example, marine sand at initial time, and sea water penetration later on.
Journal of The Korea Concrete Institute | 2015
In-Seok Yoon
The chloride ions, responsible for the initiation of the corrosion mechanism, intrude from the external medium into the concrete. A part of the intruding chloride ions will be retained by the hydration products of the binder in concrete, either through chemical adsorption or by physical adsorption. Since the hydration products of cement are responsible for the chloride binding in concrete, this study focused on the chloride binding in individual hydrate. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with cement hydrates, focused on its mechanism. AFt phase and CH phase were not able to absorb chloride ion, however, C-S-H phase and AFm phase had a significant chloride adsorption capacity. In particular, AFm phase showed a chemical adsorption with slow rate in 40 days, while C-S-H phase showed binding behaviors with 3 stages including momentary physical adsorption, physico-chemical adsorption, and chemical adsorption. Based on the results, this study suggested theoretical approach to depict chloride adsorption behavior with elapsed time of C-S-H phase and AFm phase effectively. It is believed that the approach suggested in this study can provide us with a good solution to understand the mechanism on chloride adsorption with hydrates and to calculate a rate of chloride penetration with original source of chloride ions, for example, marine sand at initial time or sea water penetration later on.
Journal of The Korea Concrete Institute | 2007
In-Seok Yoon
The vulnerability of concrete to its environment is significantly dependent on the fact that concrete is a porous material. For well-consolidated and well-cured concrete, its service life is a very long and an entrance of aggressive substance might be only pores. However, for cracked concrete, cracks should be preferential channel for the penetration of aggressive substance such as chloride ions. The effect of crack on chloride penetration depends on its size for example, crack width and crack depth. The purpose of this study is examining the effect of crack width and crack depth on chloride penetration. In order to visualize chloride penetration via cracks, RCM (rapid chloride migration) testing is accomplished. Crack width is examined using an optical microscope and CMOD value is used to estimate average crack width. From the examination on the trend of chloride diffusion coefficients of concrete specimens with various crack widths, a critical crack width and a critical crack depth are found out.
Journal of The Korea Concrete Institute | 2007
In-Seok Yoon
Over the past few decades, considerable numbers of studies on the durability of concrete have been carried out extensively. A lot of improvements have been achieved especially in both measuring techniques as well as modeling of ionic flows. However, the majority of these researches have been performed on sound uncracked concrete, although most of in-situ concrete structures have more or less micro-cracks. It is only recent approach that the attention has shifted towards the influence of cracks and crack width on the penetration of chloride into concrete. The penetration of chlorides into concrete through the cracks can make a significant harmful effect on reinforcement corrosion. On the other hand, a general acceptable crack width of 0.3 mm has been recognized for keeping the serviceability of concrete structures in accordance with a lot of codes. However, there seems to be rare established description to explain the critical crack width in terms of the durability of concrete. To make a bad situation worse, there is little agreement on critical crack width among a few of literatures for this issue. Critical crack width is still controversial problem. Nevertheless, since the critical crack width is important key for healthy assessment of concrete structures exposed to marine environment, it should be established. The objective of this study is to define a critical crack width. The critical crack width in this study is designed for a threshold crack width, which contributes to the first variation of chloride diffusion coefficient in responsive to the existence of cracks. A simple solution is formulated to realize the quantifiable parameter, chloride diffusion coefficient for only cracked zone excluding sound concrete. From the examination on the trend of chloride diffusion coefficient of only cracked zone for various crack widths, a critical crack width is founded out.
Journal of The Korea Concrete Institute | 2003
Chang-Soo Lee; In-Seok Yoon; Jong-Hyok Park
The major cause of deterioration for the concrete bridge decks exposed to de-icing chemicals would be chloride-induced reinforcement corrosion. Thus, in this paper, in order to predict time to corrosion for concrete bridge decks in the urban area, chloride concentration was measured with depth from the surface. A frequency analysis on surface chloride concentration and chloride diffusion coefficient of concrete bridge deck equals 0.192, 29.828 in the scale parameter and 7.899, 1.983 in the shape parameter of gamma distribution. The average value of surface chloride concentration equals 1.5 kg/㎥ and condenses from 1 to 2 kg/㎥ in the level of probability 70%. From the probabilistic results, it is confirmed that 26mm of minimum cover depth in order to target 20 years over is calculated. The countermeasure strategy to extend the service life of concrete bridge deck exposed to de-icing chemicals would be an effective method to increase cover depth and to place high performance concrete, which could lead to reduce the chloride diffusion coefficient and distribution range.
Journal of The Korea Concrete Institute | 2003
Chang-Soo Lee; In-Seok Yoon
The most common deterioration cause of concrete structures in urban environment is carbonation. Recently, the concentration and temperature at atmosphere is sharply increased with time due to global warming phenomena. In this study, the climate scenario IS92a, which was suggested by the IPCC, is used to consider temperature and atmospheric concentration change in the model of service life prediction. The modified mathematical solution, which was based on the Ficks 1st law of diffusion, was used to reflect concrete materials properties such as the degree of hydration of concrete with elapsed time, and important parameters, which associated with deterioration rate. The techniques of service life prediction are developed introducing the method of reliability and stochastic concept to consider microclimatic condition in Seoul, South Korea. From the result of service life prediction, concrete containing high W/C ratio is shown fast carbonation rate due to concentration increase. It is concluded that the deterioration of concrete structures due to carbonation is insignificant problem on the conditions that below W/C 55%, well curing concrete.
Ksce Journal of Civil Engineering | 2014
In-Seok Yoon; Erik Schlangen