Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where In-Sook Kwun is active.

Publication


Featured researches published by In-Sook Kwun.


Journal of Nutritional Biochemistry | 2014

Novel insights of dietary polyphenols and obesity

Shu Wang; Naima Moustaid-Moussa; Lixia Chen; Huanbiao Mo; Anuradha Shastri; Rui Su; Priyanka Bapat; In-Sook Kwun; Chwan-Li Shen

The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.


Nutrition Research and Practice | 2010

Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells

Hyun-Ju Seo; Young-Eun Cho; Taewan Kim; Hong-In Shin; In-Sook Kwun

Zinc is an essential trace element required for bone formation, however not much has been clarified yet for its role in osteoblast. We hypothesized that zinc would increase osteogenetic function in osteoblasts. To test this, we investigated whether zinc treatment enhances bone formation by stimulating osteoblast proliferation, bone marker protein alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. MC3T3-E1 cells were cultured and treated with various concentrations of zinc (0, 1, 3, 15, 25 uM) along with a normal osteogenic medium (OSM) as control for 1, 5, 10 days. As measured by MTT assay for mitochondrial metabolic activity, cell proliferation was stimulated even at low zinc treatment (1-3 µM) compared to OSM, and it was stimulated in a zinc concentration-dependent manner during 5 and 10 days, with the most pronounced effect at 15 and 25 uM Zn. Cellular (synthesized) alkaline phosphatase (ALP) activity was increased in a zinc concentration-dependent manner, so did medium (secreted) ALP activity. Cellular collagen concentration was increased by zinc as time went by, therefore with the maximum zinc stimulatory effect in 10 days, and medium collagen concentration showed the same pattern even on 1 and 5 day. This zinc stimulatory effect of collagen synthesis was observed in cell matrix collagen staining. The study results imply that zinc can increase osteogenic effect by stimulating cell proliferation, ALP activity and collagen synthesis in osteoblastic cells.


Bone | 2010

Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation

In-Sook Kwun; Young-Eun Cho; Ria-Ann R. Lomeda; Hong-In Shin; Je-Yong Choi; Young-Hee Kang; John H. Beattie

A characteristic sign of zinc deficiency is retarded skeletal growth, but the role of zinc in osteoblasts is not well understood. Two major events for bone formation include osteoblast differentiation by bone marker gene expression, which is mainly regulated by bone-specific transcription factor Runx2 and extracellular matrix (ECM) mineralization by Ca deposits for bone nodule formation. We investigated whether zinc deficiency down-regulates bone marker gene transcription and whether this might occur through modulation of Runx2. We also investigated whether zinc deficiency decreases ECM mineralization in osteoblastic MC3T3-E1 cells. In the presence of 5 mumol/L TPEN as zinc chelator, zinc deficiency (ZnD: 1 micromol Zn/L) decreased bone marker gene (collagen type I, osteopontin, alkaline phosphatase, osteoclacin and parathyroid hormone receptor) expression, as compared to normal osteogenic medium (OSM) or zinc adequate medium (ZnA: 15 micromol/L) (P<0.05) both at 5 days (proliferation) and 15 days (matrix maturation). Decreased bone marker gene transcription by zinc deficiency could be caused by decreased nuclear Runx2 protein (P=0.05) and transcript (P<0.05) levels in ZnD. Furthermore, within the first 24 h of differentiation when Runx2 expression is induced, maximal Runx2 mRNA and nuclear protein levels were delayed in ZnD compared to OSM and ZnA. ECM Ca deposition was also lower in ZnD, which was also indirectly confirmed by detection of decreased cellular (synthesized) and medium (secreted) ALP activity as well as matrix ALP activity. Taken together, zinc deficiency attenuated osteogenic activity by decreasing bone marker gene transcription through reduced and delayed Runx2 expression and by decreasing ECM mineralization through inhibition of ALP activity in osteoblasts. Decreased and delayed bone marker gene, Runx2 expression and ECM mineralization in osteoblasts by zinc deficiency can be a potential explanation for the retarded skeletal growth which is the major zinc deficiency syndrome.


Journal of Nutritional Biochemistry | 2012

Dietary polyphenols and mechanisms of osteoarthritis

Chwan-Li Shen; Brenda J. Smith; Di-Fan Lo; Ming-Chien Chyu; Dale M. Dunn; Chung-Hwan Chen; In-Sook Kwun

Osteoarthritis is a condition caused in part by injury, loss of cartilage structure and function, and an imbalance in inflammatory and anti-inflammatory pathways. It primarily affects the articular cartilage and subchondral bone of synovial joints and results in joint failure, leading to pain upon weight bearing including walking and standing. There is no cure for osteoarthritis, as it is very difficult to restore the cartilage once it is destroyed. The goals of treatment are to relieve pain, maintain or improve joint mobility, increase the strength of the joints and minimize the disabling effects of the disease. Recent studies have shown an association between dietary polyphenols and the prevention of osteoarthritis-related musculoskeletal inflammation. This review discusses the effects of commonly consumed polyphenols, including curcumin, epigallocatechin gallate and green tea extract, resveratrol, nobiletin and citrus fruits, pomegranate, as well as genistein and soy protein, on osteoarthritis with an emphasis on molecular antiosteoarthritic mechanisms.


Nutrition Research | 2012

Fruits and dietary phytochemicals in bone protection

Chwan-Li Shen; Vera von Bergen; Ming-Chien Chyu; Marjorie R. Jenkins; Huanbiao Mo; Chung-Hwan Chen; In-Sook Kwun

Osteoporosis is a disease of bone characterized by loss of bone matrix and deterioration of bone microstructure that leads to an increased risk of fracture. Cross-sectional studies have shown a positive association between higher fruit intake and higher bone mineral density. In this review, we evaluated animal and cellular studies of dried plum and citrus and berry fruits and bioactive compounds including lycopene, phenolics, favonoids, resveratrol, phloridzin, and pectin derived from tomato, grapes, apples, and citrus fruits. In addition, human studies of dried plum and lycopene were reviewed. Animal studies strongly suggest that commonly consumed antioxidant-rich fruits have a pronounced effect on bone, as shown by higher bone mass, trabecular bone volume, number, and thickness, and lower trabecular separation through enhancing bone formation and suppressing bone resorption, resulting in greater bone strength. Such osteoprotective effects seem to be mediated via antioxidant or anti-inflammatory pathways and their downstream signaling mechanisms, leading to osteoblast mineralization and osteoclast inactivation. In future studies, randomized controlled trials are warranted to extend the bone-protective activity of fruits and their bioactive compounds. Mechanistic studies are needed to differentiate the roles of phytochemicals and other constitutes in bone protection offered by the fruits. Advanced imaging technology will determine the effective doses of phytochemicals and their metabolites in improving bone mass, microarchitecture integrity, and bone strength, which is a critical step in translating the benefits of fruit consumption on osteoporosis into clinical data.


Journal of Nutritional Biochemistry | 2010

Licorice isoliquiritigenin dampens angiogenic activity via inhibition of MAPK-responsive signaling pathways leading to induction of matrix metalloproteinases

Sang-Wook Kang; Jung-Suk Choi; Yean-Jung Choi; Ji-Young Bae; Jing Li; Dong Shoo Kim; Jung-Lye Kim; Seung-Yong Shin; Yong-Jin Lee; In-Sook Kwun; Young-Hee Kang

The aberrant expression of matrix metalloproteinases (MMPs) has been implicated in matrix degradation leading to angiogenesis. This study examined the inhibitory effects of isoliquiritigenin (ISL) on phorbol myristate acetate (PMA)-induced MMP production and its tissue inhibitor of MMP (TIMP) in endothelial cells. No induction of either necrotic or apoptotic cell death was observed in response to a treatment with ISL at <or=25 microM. ISL dose-dependently suppressed PMA-induced expression and activity of MMP-2 and membrane type 1-MMP at >or=1 microM while diminishing the elevated MMP-2 transcript level. In addition, ISL inhibited PMA-triggered migration and tube formation in a dose-dependent manner. ISL further increased the TIMP production up-regulated by PMA with a biphasic effect on TIMP-2 expression. This study further attempted to investigate whether a c-Jun N-terminal kinase (JNK)- or p38 mitogen-activated protein kinase (MAPK)-responsive mechanism was responsible for the MMP production and whether ISL disturbed these signaling pathways. PMA stimulated signaling of JNK and p38 MAPK, which was dampened by >or=10 microM ISL. These results demonstrate that ISL blocked JNK- or p38 MAPK-responsive pathways leading to direct MMP activation of PMA-exposed endothelial cells. Therefore, the ISL inhibition of MMP may boost a therapeutic efficacy during angiogenesis.


Journal of Nutritional Biochemistry | 2011

Diosgenin stimulates osteogenic activity by increasing bone matrix protein synthesis and bone-specific transcription factor Runx2 in osteoblastic MC3T3-E1 cells☆

Ethel H. Alcantara; Mee-Young Shin; Ho-Yong Sohn; Youn-Moon Park; Taewan Kim; Jae-Hwan Lim; Hyung-Jin Jeong; Soon-Tae Kwon; In-Sook Kwun

Diosgenin, a steroid saponin extracted from the root of wild yam (Dioscorea villossa) is claimed to have osteogenic property. However, detailed studies providing evidence to this claim have not been fully undertaken. In this study, we investigated the effect of diosgenin on the osteogenesis of murine MC3T3-E1 osteoblastic cells. Cells were cultured with varying levels of diosgenin (0-10 μM) within 25 days of bone formation period. Diosgenin was found to stimulate proliferation within the range of 0.01-5 μM using MTT assay. The medium and cellular levels of Type 1 collagen and alkaline phosphatase (ALP), both of which are major bone matrix proteins, increased within the low range of diosgenin concentration (>0-3 μM), and this pattern was further confirmed by collagen and ALP staining of the extracellular matrix (ECM). The cellular protein expression of ALP and collagen Type 1 was also increased at 0.1-1 μM diosgenin treatment as analyzed by Western blot. Calcium deposition within the ECM also showed the same pattern as assessed by Alizarin Red S and Von Kossa staining. Bone-specific transcription factor runt-related transcription factor 2 (Runx2) and Runx2-regulated osteopontin protein expressions were induced at low concentration (0.1-1 μM) and again decreased with high diosgenin concentrations. Based on our findings, our study suggests that diosgenin can enhance bone formation by stimulating the synthesis and secretion of Type 1 collagen and ALP and bone marker proteins Runx2 and osteopontin expression. The increased levels of these marker proteins, in turn, can increase the formation of calcium deposits within the ECM thereby increasing bone formation.


British Journal of Nutrition | 2008

Green tea catechin enhances cholesterol 7α-hydroxylase gene expression in HepG2 cells

Mak-Soon Lee; Juyeon Park; Hedley C. Freake; In-Sook Kwun; Yangha Kim

Green tea catechins are known to have hypocholesterolaemic effects in animals and human subjects. In the present study, we investigated the effects of green tea catechins on the mRNA level and promoter activity of hepatic cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme in the conversion of cholesterol to bile acids, in human hepatoma cells. Real-time PCR assays showed that different catechins, (-)-epicatechin gallate (ECG), (-)-epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin (EGC) and (-)-epicatechin (EC), up regulated the CYP7A1 mRNA level by 5.5-, 4.2-, 2.9- and 1.9-fold, respectively, compared with the control. The -1312/+358 bp of the CYP7A1 promoter was subcloned into the pGL3 basic vector that includes luciferase as a reporter gene. ECG or EGCG significantly increased CYP7A1 promoter activity by 6.0- or 4.0-fold, respectively, compared with the control. Also, EGCG stimulated CYP7A1 at both mRNA level and promoter activity in a dose-dependent manner. These results suggest that the expression of the CYP7A1 gene may be directly regulated by green tea catechins at the transcriptional level.


Biological Trace Element Research | 2000

Dietary molar ratios of phytate: Zinc and millimolar ratios of phytate × calcium: Zinc in South Koreans

In-Sook Kwun; Chong-Suk Kwon

The zinc nutritional status in south Koreans was established by evaluation of zinc, calcium and phytate intakes, the molar ratio of phytate: zinc, and the millimolar ratio of phytate × calcium: zinc. The intakes of iron and magnesium were also estimated. Sampling was designed so that it was representative of the national population. Two-day food records were used for the calculation of nutrient intakes, using food consumption data from the 1995 National Nutrition Survey (’95NNS) for South Korea. Daily intakes of zinc and calcium were estimated to be 10.1 mg/d and 426.5 mg/d, respectively, and those of iron and magnesium were 15.2 mg/d and 268.0 mg/d, respectively. The estimated daily phytate intake was 1676.6 mg/d. The ratio of phytate: zinc was 15.9 mol/d and that of phytate × calcium: zinc was 168.9 mmol/d. The ratio in millimoles per 4.2 MJ (1000 kcal) of phytate × calcium: zinc was 91.8. The major food groups for zinc intake were meat, poultry and their products (43%), and cereals and grain products (18%). Sixty-two percent of zinc was from animal food sources. Cereal and grain products supplied most of the phytate intake (46%) followed by seasonings, fruits, and legumes and their products. The major food source of phytate was rice (39%). The results of the study raise concern about the suboptimal zinc status in relation to the Western diet.


Journal of Agricultural and Food Chemistry | 2010

Isoliquiritigenin Entails Blockade of TGF-β1-SMAD Signaling for Retarding High Glucose-Induced Mesangial Matrix Accumulation

Jing Li; Sang-Wook Kang; Jung-Lye Kim; Hye-Young Sung; In-Sook Kwun; Young-Hee Kang

Diabetic nephropathy characterized as mesangial fibrosis and glomerulosclerosis results in renal failure and end-stage renal diseases. Enhanced expression and secretion of connective tissue growth factor (CTGF) play an important role in the expansion of glomerular mesangial matrix mostly composed of type IV collagen. Isoliquiritigenin can prevent various renal injuries via its anti-inflammatory action. However, the effect of isoliquiritigenin on diabetic nephropathy has never been explored. The present study was to investigate whether nontoxic isoliquiritigenin inhibited high glucose (HG)-induced mesangial fibrosis by retarding formation of type IV collagen as well as CTGF in human mesangial cells (HRMC). Serum starved cells were cultured in media containing 5.5 mM glucose plus 27.5 mM mannitol as an osmotic control or 33 mM glucose for 3 days with and without 1-20 microM isoliquiritigenin. Exposure of cells to HG caused marked increases in collagen secretion and CTGF expression, which was dose-dependently reversed by isoliquiritigenin at the transcriptional levels. Additionally, isoliquiritigenin boosted HG-plummeted type matrix metalloproteinase-1 (MT-1 MMP) expression and dampened HG-elevated tissue inhibitor of MMP-2 (TIMP-2) expression, facilitating the degradation of mesangial matrix. Isoliquiritigenin inhibited HG-upregulated CTGF and TIMP-2 expression via disturbing TGF-beta1 signaling in HRMC, as evidenced by TGF-beta receptor I kinase (TGF-beta RI) inhibitor. HG-activated SMAD2 through autocrine TGF-beta signaling was repealed by > or =10 microM isoliquiritigenin. HG induced SMAD4 expression of HRMC and obliterated antagonistic SMAD7, whereas isoliquiritigenin suppressed induction of TGF-beta RII and TGF-beta RI with blunting their downstream SMAD signaling. The results demonstrate that the bioactive isoliquiritigenin in licorice diminished mesangial matrix accumulation in response to ambient HG through retarding TGF-beta1-SMAD signaling transduction. Therefore, isoliquiritigenin may be a potential therapeutic agent for the prevention and treatment of mesangial fibrosis and glomerulosclerosis leading to diabetic nephropathy due to longstanding diabetes mellitus.

Collaboration


Dive into the In-Sook Kwun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young-Eun Cho

Andong National University

View shared research outputs
Top Co-Authors

Avatar

Mee-Young Shin

Andong National University

View shared research outputs
Top Co-Authors

Avatar

Ria-Ann R. Lomeda

Andong National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chong-Suk Kwon

Andong National University

View shared research outputs
Top Co-Authors

Avatar

Ho-Yong Sohn

Andong National University

View shared research outputs
Top Co-Authors

Avatar

Hong-In Shin

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Soon-Tae Kwon

Andong National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge