Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ina Knerr is active.

Publication


Featured researches published by Ina Knerr.


Journal of Proteome Research | 2014

N-Glycan Abnormalities in Children with Galactosemia

Karen P. Coss; Colin Patrick Hawkes; Barbara Adamczyk; Henning Stöckmann; Ellen Crushell; Radka Saldova; Ina Knerr; Maria E. Rubio-Gozalbo; A. A. Monavari; Pauline M. Rudd; Eileen P. Treacy

Galactose intoxication and over-restriction in galactosemia may affect glycosylation pathways and cause multisystem effects. In this study, we describe an applied hydrophilic interaction chromatography ultra-performance liquid chromatography high-throughput method to analyze whole serum and extracted IgG N-glycans with measurement of agalactosylated (G0), monogalactosylated (G1), and digalactosylated (G2) structures as a quantitative measure of galactose incorporation. This was applied to nine children with severe galactosemia (genotype Q188R/Q188R) and one child with a milder variant (genotype S135L/S135L). The profiles were also compared with those obtained from three age-matched children with PMM2-CDG (congenital disorder of glycosylation type Ia) and nine pediatric control samples. We have observed that severe N-glycan assembly defects correct in the neonate following dietary restriction of galactose. However, treated adult galactosemia patients continue to exhibit ongoing N-glycan processing defects. We have now applied informative galactose incorporation ratios as a method of studying the presence of N-glycan processing defects in children with galactosemia. We identified N-glycan processing defects present in galactosemia children from an early age. For G0/G1, G0/G2, and (G0/G1)/G2 ratios, the difference noted between galactosemia patients and controls was found to be statistically significant (p = 0.002, 0.01, and 0.006, respectively).


Molecular Genetics and Metabolism | 2014

Systemic gene dysregulation in classical Galactosaemia: Is there a central mechanism?

Karen P. Coss; Eileen P. Treacy; Eoin J. Cotter; Ina Knerr; D.W. Murray; Yoon Shin; Peter Doran

Classical Galactosaemia is a rare disorder of carbohydrate metabolism caused by a deficiency of galactose-1-phosphate uridyltransferase (GALT). The disease is life-threatening in the neonate, and the only treatment option is life-long dietary restriction of galactose. However, long-term complications persist in treated patients including cognitive impairments, speech and language abnormalities and premature ovarian insufficiency in females. Microarray analysis of T-lymphocytes from treated adult patients identified systemic dysregulation of numerous gene pathways, including the glycosylation, inflammatory and inositol pathways. Analysis of gene expression in patient-derived dermal fibroblasts of patients exposed to toxic levels of galactose, with immunostaining, has further identified the susceptibility of the glycosylation gene alpha-1,2-mannosyltransferase (ALG9) and the inflammatory gene annexin A1 (ANXA1) to increased galactose concentrations. These data suggest that Galactosaemia is a multi-system disorder affecting numerous signalling pathways.


European Journal of Human Genetics | 2016

Classical galactosaemia: novel insights in IgG N -glycosylation and N -glycan biosynthesis

Ashwini Maratha; Henning Stöckmann; Karen P. Coss; M. Estela Rubio-Gozalbo; Ina Knerr; Maria Fitzgibbon; Terri P McVeigh; Patricia Foley; Catherine Moss; Hugh-Owen Colhoun; Britt van Erven; Kelly Stephens; Peter Doran; Pauline M. Rudd; Eileen P. Treacy

Classical galactosaemia (OMIM #230400), a rare disorder of carbohydrate metabolism, is caused by a deficient activity of galactose-1-phosphate uridyltransferase (EC 2.7.7.12). The pathophysiology of the long-term complications, mainly cognitive, neurological and female fertility problems remains poorly understood. The lack of validated biomarkers to determine prognosis, monitor disease progression and responses to new therapies, pose a huge challenge. We report the detailed analysis of an automated robotic hydrophilic interaction ultra-performance liquid chromatography N-glycan analytical method of high glycan peak resolution applied to serum IgG. This has revealed specific N-glycan processing defects observed in 40 adult galactosaemia patients (adults and adolescents), in comparison with 81 matched healthy controls. We have identified a significant increase in core fucosylated neutral glycans (P<0.0001) and a significant decrease in core fucosylated (P<0.001), non-fucosylated (P<0.0001) bisected glycans and, of specific note, decreased N-linked mannose-5 glycans (P<0.0001), in galactosaemia patients. We also report the abnormal expression of a number of related relevant N-glycan biosynthesis genes in peripheral blood mononuclear cells from 32 adult galactosaemia patients. We have noted significant dysregulation of two key N-glycan biosynthesis genes: ALG9 upregulated (P<0.001) and MGAT1 downregulated (P<0.01) in galactosaemia patients, which may contribute to its ongoing pathophysiology. Our data suggest that the use of IgG N-glycosylation analysis with matched N-glycan biosynthesis gene profiles may provide useful biomarkers for monitoring response to therapy and interventions. They also indicate potential gene modifying steps in this N-glycan biosynthesis pathway, of relevance to galactosaemia and related N-glycan biosynthesis disorders.


Pediatric Research | 2015

Effects of temporary low-dose galactose supplements in children aged 5–12 y with classical galactosemia: a pilot study

Ina Knerr; Karen P. Coss; Jürgen Kratzsch; Ellen Crushell; Anne Clark; Peter Doran; Yoon Shin; Henning Stöckmann; Pauline M. Rudd; Eileen P. Treacy

Background:Classical galactosemia is caused by severe galactose-1-phosphate uridyltransferase deficiency. Despite life-long galactose-restriction, many patients experience long-term complications. Intoxication by galactose and its metabolites as well as over-restriction of galactose may contribute to the pathophysiology. We provided temporary low-dose galactose supplements to patients. We assessed tolerance and potential beneficial effects with clinical monitoring and measurement of biochemical, endocrine, and IgG N-glycosylation profiles.Methods:We enrolled 26 patients (8.6 ± 1.9 y). Thirteen were provided with 300 mg of galactose/day followed by 500 mg for 2 wk each (13 patient controls).Results:We observed no clinical changes with the intervention. Temporary mild increase in galactose-1-phosphate occurred, but renal, liver, and bone biochemistry remained normal. Patients in the supplementation group had slightly higher leptin levels at the end of the study than controls. We identified six individuals as “responders” with an improved glycosylation pattern (decreased G0/G2 ratio, P < 0.05). There was a negative relationship between G0/G2 ratio and leptin receptor sOb-R in the supplementation group (P < 0.05).Conclusion:Temporary low-dose galactose supplementation in children over 5 y is well tolerated in the clinical setting. It leads to changes in glycosylation in “responders”. We consider IgG N-glycan monitoring to be useful for determining individual optimum galactose intake.


JIMD Reports | 2012

Leptin Levels in Children and Adults with Classic Galactosaemia

Ina Knerr; Karen P. Coss; Peter Doran; Joanne Hughes; Nicholas J. Wareham; Keith Burling; Eileen P. Treacy

Among the long-term complications of Classic Galactosaemia (Gal) is premature ovarian insufficiency (POI) in female patients with subtle abnormalities of reproductive function also reported in male patients. Leptin is a circulating hormone which reflects body energy stores and which affects the neuroendocrine reproductive axis and pubertal development.We measured serum leptin in 28 children (10 girls, 18 boys; mean age 7.6 years, range 0.5-17.9 years) and in 22 adults (10 females, 12 males; mean age 23.9 years, range 18-37 years) with Gal on a strict galactose-restricted diet in comparison with control data.Leptin levels (expressed as SDS for gender and pubertal stage) were lower in Gal children than controls (mean leptin-SDS = -0.71 for girls, p < 0.05, -0.97 for boys compared with SDS = 0 for controls, p < 0.05). In an age-related analysis, leptin levels did not correlate with age in children with Gal for both sexes as it did for matched controls.As expected, females had higher leptin levels than males in either group. In adults with Gal, leptin concentrations were within normal limits for both sexes when adjusted for gender and BMI. There was a linear relationship between log-leptin and BMI in children with Gal and in controls. For Gal women, log-leptin was also associated with BMI. However, for Gal men, and hence for the entire group of adult Gal patients, this association between log-leptin and BMI was not detectable. Our findings suggest that leptin dysregulation may play a role in fertility issues in individuals with Gal from an early age.


Journal of Medical Genetics | 2016

A recurrent mitochondrial p.Trp22Arg NDUFB3 variant causes a distinctive facial appearance, short stature and a mild biochemical and clinical phenotype

Charlotte L. Alston; Caoimhe Howard; Monika Oláhová; Steven A. Hardy; Langping He; Philip Murray; Siobhan O'Sullivan; Gary Doherty; Julian Shield; Iain Hargreaves; A. A. Monavari; Ina Knerr; Peter McCarthy; A. A. M. Morris; David R. Thorburn; Holger Prokisch; Peter Clayton; Robert McFarland; Joanne Hughes; Ellen Crushell; Robert W. Taylor

Background Isolated Complex I deficiency is the most common paediatric mitochondrial disease presentation, associated with poor prognosis and high mortality. Complex I comprises 44 structural subunits with at least 10 ancillary proteins; mutations in 29 of these have so far been associated with mitochondrial disease but there are limited genotype-phenotype correlations to guide clinicians to the correct genetic diagnosis. Methods Patients were analysed by whole-exome sequencing, targeted capture or candidate gene sequencing. Clinical phenotyping of affected individuals was performed. Results We identified a cohort of 10 patients from 8 families (7 families are of unrelated Irish ancestry) all of whom have short stature (<9th centile) and similar facial features including a prominent forehead, smooth philtrum and deep-set eyes associated with a recurrent homozygous c.64T>C, p.Trp22Arg NDUFB3 variant. Two sibs presented with primary short stature without obvious metabolic dysfunction. Analysis of skeletal muscle from three patients confirmed a defect in Complex I assembly. Conclusions Our report highlights that the long-term prognosis related to the p.Trp22Arg NDUFB3 mutation can be good, even for some patients presenting in acute metabolic crisis with evidence of an isolated Complex I deficiency in muscle. Recognition of the distinctive facial features—particularly when associated with markers of mitochondrial dysfunction and/or Irish ancestry—should suggest screening for the p.Trp22Arg NDUFB3 mutation to establish a genetic diagnosis, circumventing the requirement of muscle biopsy to direct genetic investigations.


JIMD reports | 2016

Classical Galactosaemia and CDG, the N-Glycosylation Interface. A Review

Ashwini Maratha; Hugh-Owen Colhoun; Ina Knerr; Karen P. Coss; Peter Doran; Eileen P. Treacy

Classical galactosaemia is a rare disorder of carbohydrate metabolism caused by galactose-1-phosphate uridyltransferase (GALT) deficiency (EC 2.7.7.12). The disease is life threatening if left untreated in neonates and the only available treatment option is a long-term galactose restricted diet. While this is lifesaving in the neonate, complications persist in treated individuals, and the cause of these, despite early initiation of treatment, and shared GALT genotypes remain poorly understood. Systemic abnormal glycosylation has been proposed to contribute substantially to the ongoing pathophysiology. The gross N-glycosylation assembly defects observed in the untreated neonate correct over time with treatment. However, N-glycosylation processing defects persist in treated children and adults.Congenital disorders of glycosylation (CDG) are a large group of over 100 inherited disorders affecting largely N- and O-glycosylation.In this review, we compare the clinical features observed in galactosaemia with a number of predominant CDG conditions.We also summarize the N-glycosylation abnormalities, which we have described in galactosaemia adult and paediatric patients, using an automated high-throughput HILIC-UPLC analysis of galactose incorporation into serum IgG with analysis of the corresponding N-glycan gene expression patterns and the affected pathways.


JIMD reports | 2015

IgG N-Glycosylation Galactose Incorporation Ratios for the Monitoring of Classical Galactosaemia

Henning Stöckmann; Karen P. Coss; M. Estela Rubio-Gozalbo; Ina Knerr; Maria Fitzgibbon; Ashwini Maratha; James F. Wilson; Pauline Rudd; Eileen P. Treacy

Classical galactosaemia (OMIM #230400) is a rare disorder of carbohydrate metabolism caused by deficiency of the galactose-1-phosphate uridyltransferase enzyme (EC 2.7.7.12). The cause of the long-term complications, including neurological, cognitive and fertility problems in females, remains poorly understood. The relatively small number of patients with galactosaemia and the lack of validated biomarkers pose a substantial challenge for determining prognosis and monitoring disease progression and responses to new therapies. We report an improved method of automated robotic hydrophilic interaction ultra-performance liquid chromatography N-glycan analysis for the measurement of IgG N-glycan galactose incorporation ratios applied to the monitoring of adult patients with classical galactosaemia. We analysed 40 affected adult patients and 81 matched healthy controls. Significant differences were noted between the G0/G1 and G0/G2 incorporation ratios between galactosaemia patients and controls (p < 0.001 and <0.01, respectively). Our data indicate that the use of IgG N-glycosylation galactose incorporation analysis may be now applicable for monitoring patient dietary compliance, determining prognosis and the evaluation of potential new therapies.


Journal of Medical Genetics | 2018

Catalogue of inherited disorders found among the Irish Traveller population

Sally Ann Lynch; Ellen Crushell; Deborah M Lambert; Niall Byrne; Kathleen M. Gorman; Mary D. King; Andrew Green; Siobhan O’Sullivan; Fiona Browne; Joanne Hughes; Ina Knerr; Ahmad Monavari; Melanie Cotter; Vivienne McConnell; Bronwyn Kerr; Simon A. Jones; Catriona Keenan; Nuala Murphy; Declan Cody; Sean Ennis; Jackie Turner; Alan D. Irvine; Jillian P. Casey

Background Irish Travellers are an endogamous, nomadic, ethnic minority population mostly resident on the island of Ireland with smaller populations in Europe and the USA. High levels of consanguinity result in many rare autosomal recessive disorders. Due to founder effects and endogamy, most recessive disorders are caused by specific homozygous mutations unique to this population. Key clinicians and scientists with experience in managing rare disorders seen in this population have developed a de facto advisory service on differential diagnoses to consider when faced with specific clinical scenarios. Objective(s) To catalogue all known inherited disorders found in the Irish Traveller population. Methods We performed detailed literature and database searches to identify relevant publications and the disease mutations of known genetic disorders found in Irish Travellers. Results We identified 104 genetic disorders: 90 inherited in an autosomal recessive manner; 13 autosomal dominant and one a recurring chromosomal duplication. Conclusion We have collated our experience of inherited disorders found in the Irish Traveller population to make it publically available through this publication to facilitate a targeted genetic approach to diagnostics in this ethnic group.


JIMD reports | 2015

Friedreich Ataxia in Classical Galactosaemia

Siobhán Neville; Siobhan O’Sullivan; Bronagh Sweeney; Bryan Lynch; Donncha Hanrahan; Ina Knerr; Sally Ann Lynch; Ellen Crushell

Movement disorders such as ataxia are a recognized complication of classical galactosaemia, even in diet-compliant patients. Here, we report the coexistence of classical galactosaemia and Friedreich ataxia (FRDA) in nine children from seven Irish Traveller families. These two autosomal recessive disorders, the loci for which are located on either side of the centromere of chromosome 9, appear to be in linkage disequilibrium in this subgroup. Both conditions are known to occur with increased frequency amongst the Irish Traveller population.Each member of our cohort had been diagnosed with galactosaemia in the neonatal period, and all are homozygous for the common Q188R mutation in the GALT gene. Eight of the nine patients later presented with progressive ataxia, between the ages of 5-13 years. Another child presented in cardiac failure secondary to dilated cardiomyopathy at 7 years of age. He was not ataxic at presentation and, one year from diagnosis, his neurological examination remains normal. The diagnosis of FRDA was confirmed by detecting the common pathogenic GAA expansion in both alleles of the frataxin gene (FXN) in each patient.Neurological symptoms are easily attributed to an underlying diagnosis of galactosaemia. It is important to consider a diagnosis of Friedreich ataxia in a child from the Irish Traveller population with galactosaemia who presents with ataxia or cardiomyopathy.

Collaboration


Dive into the Ina Knerr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eileen P. Treacy

Mater Misericordiae University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen P. Coss

Mater Misericordiae University Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter Doran

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashwini Maratha

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Mayne

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge