Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ina Maria Schießl is active.

Publication


Featured researches published by Ina Maria Schießl.


American Journal of Physiology-renal Physiology | 2013

Angiotensin II AT2 receptor activation attenuates AT1 receptor-induced increases in the glomerular filtration of albumin: a multiphoton microscopy study

Ina Maria Schießl; Hayo Castrop

In this study, we assessed the acute effects of angiotensin II on the albumin glomerular sieving coefficient (GSC) using intravital microscopy. The experiments were performed on Munich Wistar Froemter (MWF) rats. Alexa-Fluor-594 albumin was injected intravenously, and the fluorescence intensity in the glomerular capillaries and Bowmans space was determined to calculate the albumin GSC. The GSC was measured before and during the constant infusion of angiotensin II (10 ng·min(-1)·kg(-1) body wt). Baseline mean arterial pressure (MAP) was 99 ± 5 mmHg and stabilized at 137 ± 5 mmHg during angiotensin II infusion. The baseline GSC averaged 0.00044 ± 4.8 × 10(-5) and increased by 286 ± 44% after angiotensin II infusion (P < 0.0001). The proximal tubular Alexa-Fluor-594 albumin uptake was enhanced during angiotensin II infusion (518% of the baseline value during angiotensin II vs. 218% in controls; P < 0.0001). No change in GSC was observed when the AT1 antagonist losartan was injected before the start of angiotensin II infusion. The AT2 antagonist PD123319 increased the baseline GSC from 0.00052 ± 3.6 × 10(-5) to 0.00074 ± 8.2 × 10(-5) (P = 0.02) without altering the MAP. During angiotensin II infusion with losartan, PD123319 increased the albumin GSC from 0.00037 ± 5.8 × 10(-5) to 0.00115 ± 0.00015 (P = 0.001). When the renal perfusion pressure was mechanically controlled, the GSC increased from 0.0007 ± 0.00019 to 0.0025 ± 0.00063 during angiotensin II infusion (P = 0.047), similar to what was observed when the renal perfusion pressure was allowed to increase. In summary, AT1 activation acutely increases the albumin GSC. This effect appears to be largely independent of changes in the renal perfusion pressure. The AT2 receptor partially attenuates the proteinuric effects of the AT1 receptor.


Journal of The American Society of Nephrology | 2016

Intravital Imaging Reveals Angiotensin II–Induced Transcytosis of Albumin by Podocytes

Ina Maria Schießl; Anna Hammer; Veronika Kattler; Bernhard Gess; Franziska Theilig; Ralph Witzgall; Hayo Castrop

Albuminuria is a hallmark of kidney disease of various etiologies and usually caused by deterioration of glomerular filtration barrier integrity. We recently showed that angiotensin II (Ang II) acutely increases albumin filtration in the healthy kidney. Here, we used intravital microscopy to assess the effects of Ang II on podocyte function in rats. Acute infusion of 30, 60, or 80 ng/kg per minute Ang II enhanced the endocytosis of albumin by activation of the type 1 Ang II receptor and resulted in an average (±SEM) of 3.7±2.2, 72.3±18.6 (P<0.001), and 239.4±34.6 µm(3) (P<0.001) albumin-containing vesicles per glomerulus, respectively, compared with none at baseline or 10 ng/kg per minute Ang II. Immunostaining of Ang II-infused kidneys confirmed the presence of albumin-containing vesicles, which colocalized with megalin, in podocin-positive cells. Furthermore, podocyte endocytosis of albumin was markedly reduced in the presence of gentamicin, a competitive inhibitor of megalin-dependent endocytosis. Ang II infusion increased the concentration of albumin in the subpodocyte space, a potential source for endocytic protein uptake, and gentamicin further increased this concentration. Some endocytic vesicles were acidified and colocalized with LysoTracker. Most vesicles migrated from the capillary to the apical aspect of the podocyte and were eventually released into the urinary space. This transcytosis accounted for approximately 10% of total albumin filtration. In summary, the transcellular transport of proteins across the podocyte constitutes a new pathway of glomerular protein filtration. Ang II enhances the endocytosis and transcytosis of plasma albumin by podocytes, which may eventually impair podocyte function.


American Journal of Physiology-renal Physiology | 2014

Physiology and pathophysiology of the renal Na-K-2Cl cotransporter (NKCC2)

Hayo Castrop; Ina Maria Schießl

The Na-K-2Cl cotransporter (NKCC2; BSC1) is located in the apical membrane of the epithelial cells of the thick ascending limb of the loop of Henle (TAL). NKCC2 facilitates ∼20-25% of the reuptake of the total filtered NaCl load. NKCC2 is therefore one of the transport proteins with the highest overall reabsorptive capacity in the kidney. Consequently, even subtle changes in NKCC2 transport activity considerably alter the renal reabsorptive capacity for NaCl and eventually lead to perturbations of the salt and water homoeostasis. In addition to facilitating the bulk reabsorption of NaCl in the TAL, NKCC2 transport activity in the macula densa cells of the TAL constitutes the initial step of the tubular-vascular communication within the juxtaglomerular apparatus (JGA); this communications allows the TAL to modulate the preglomerular resistance of the afferent arteriole and the renin secretion from the granular cells of the JGA. This review provides an overview of our current knowledge with respect to the general functions of NKCC2, the modulation of its transport activity by different regulatory mechanisms, and new developments in the pathophysiology of NKCC2-dependent renal NaCl transport.


PLOS ONE | 2013

Superficial nephrons in BALB/c and C57BL/6 mice facilitate in vivo multiphoton microscopy of the kidney.

Ina Maria Schießl; Sophia Bardehle; Hayo Castrop

Multiphoton microscopy (MPM) offers a unique approach for addressing both the function and structure of an organ in near-real time in the live animal. The method however is limited by the tissue-specific penetration depth of the excitation laser. In the kidney, structures in the range of 100 µm from the surface are accessible for MPM. This limitation of MPM aggravates the investigation of the function of structures located deeper in the renal cortex, like the glomerulus and the juxtaglomerular apparatus. In view of the relevance of gene-targeted mice for investigating the function of these structures, we aimed to identify a mouse strain with a high percentage of superficially located glomeruli. The mean distance of the 30 most superficial glomeruli from the kidney surface was determined in 10 commonly used mouse strains. The mean depth of glomeruli was 118.4±3.4, 123.0±2.7, 133.7±3.0, 132.3±2.6, 141.0±4.0, 145.3±4.3, 148.9±4.2, 151.6±2.7, 167.7±3.9, and 207.8±3.2 µm in kidney sections from 4-week-old C3H/HeN, BALB/cAnN, SJL/J, C57BL/6N, DBA/2N, CD1 (CRI), 129S2/SvPas, CB6F1, FVB/N and NMRI (Han) mice, respectively (n = 5 animals from each strain). The mean distance from the kidney surface of the most superficial glomeruli was significantly lower in the strains C3H/HeN Crl, BALB/cAnN, DBA/2NCrl, and C57BL/6N when compared to a peer group consisting of all the other strains (p<.0001). In 10-week-old mice, the most superficial glomeruli were located deeper in the cortex when compared to 4-week-old animals, with BALB/cAnN and C57BL/6N being the strains with the highest percentage of superficial glomeruli (25% percentile 116.7 and 121.9 µm, respectively). In summary, due to significantly more superficial glomeruli compared to other commonly used strains, BALB/cAnN and C57BL/6N mice appear to be particularly suitable for the investigation of glomerular function using MPM.


Acta Physiologica | 2016

Salt-losing nephropathy in mice with a null mutation of the Clcnk2 gene.

Alexandra Grill; Ina Maria Schießl; Bernhard Gess; Katharina Fremter; Anna Hammer; Hayo Castrop

The basolateral chloride channel ClC‐Kb facilitates Cl reabsorption in the distal nephron of the human kidney. Functional mutations in CLCNKB are associated with Bartters syndrome type 3, a hereditary salt‐losing nephropathy. To address the function of ClC‐K2 in vivo, we generated ClC‐K2‐deficient mice.


Journal of Pharmacology and Experimental Therapeutics | 2015

In Vivo Visualization of the Antialbuminuric Effects of the Angiotensin-Converting Enzyme Inhibitor Enalapril

Ina Maria Schießl; Veronika Kattler; Hayo Castrop

Angiotensin-converting enzyme (ACE) inhibitors are commonly used antiproteinuric drugs. Here we assessed the effect of the ACE inhibitor enalapril on the glomerular sieving coefficient of albumin (GSCA) using intravital multiphoton microscopy. Munich Wistar Frömter (MWF) rats were used as a model of hypertension-related glomerular lesions. Young (9-week-old) MWF rats were nonproteinuric, similar to what was observed in control Wistar rats. However, urinary albumin excretion in the MWF rats gradually increased during aging, averaging 0.00062 ± 0.0001 at age 9 weeks and 0.0054 ± 0.0003 (mg/mOsmol per liter) at age 52 weeks (P < 0.0001). Albuminuria in aged MWF rats was accompanied by structural changes, which were indicative of glomerular lesions. The GSCA was low in young MWF rats but increased markedly during aging, averaging 0.00057 ± 4.7 × 10−5 (n = 25) in young MWF rats and 0.0027 ± 0.00036 in 52-week-old MWF rats (n = 36; P < 0.0001). Treatment of proteinuric 12-month-old MWF rats with enalapril over a 4-week period reduced the GSCA from 0.0027 ± 0.00036 to 0.00139 ± 0.00013 (P = 0.0005). Similarly, urinary albumin excretion was reduced, averaging 0.0051 ± 0.0003 and 0.0036 ± 0.0005 mg/mOsmol per liter before and after enalapril administration, respectively (P = 0.0089). In parallel, enalapril treatment reduced the mean arterial blood pressure (144.6 ± 6.5 mm Hg in untreated versus 110.9 ± 0.6 mm Hg in enalapril-treated MWF rats) and increased the glomerular filtration rate from 1.64 ± 0.3 ml/min to 3.58 ± 0.3 ml/min (P = 0.0025 versus baseline). In summary, enalapril reduced the GSCA in proteinuric MWF rats, which was paralleled by a similar reduction in urinary albumin excretion. These data suggest that glomerular rather than tubular mechanisms account for the beneficial antiproteinuric effects of the ACE inhibitor.


Pflügers Archiv: European Journal of Physiology | 2016

Deep insights: intravital imaging with two-photon microscopy.

Ina Maria Schießl; Hayo Castrop

Intravital multiphoton microscopy is widely used to assess the structure and function of organs in live animals. Although different tissues vary in their accessibility for intravital multiphoton imaging, considerable progress has been made in the imaging quality of all tissues due to substantial technical improvements in the relevant imaging components, such as optics, excitation laser, detectors, and signal analysis software. In this review, we provide an overview of the technical background of intravital multiphoton microscopy. Then, we note a few seminal findings that were made through the use of multiphoton microscopy. Finally, we address the technical limitations of the method and provide an outlook for how these limitations may be overcome through future technical developments.


Acta Physiologica | 2017

Novel routes of albumin passage across the glomerular filtration barrier.

Hayo Castrop; Ina Maria Schießl

Albuminuria is a hallmark of kidney diseases of various aetiologies and an unambiguous symptom of the compromised integrity of the glomerular filtration barrier. Furthermore, there is increasing evidence that albuminuria per se aggravates the development and progression of chronic kidney disease. This review covers new aspects of the movement of large plasma proteins across the glomerular filtration barrier in health and disease. Specifically, this review focuses on the role of endocytosis and transcytosis of albumin by podocytes, which constitutes a new pathway of plasma proteins across the filtration barrier. Thus, we summarize what is known about the mechanisms of albumin endocytosis by podocytes and address the fate of the endocytosed albumin, which is directed to lysosomal degradation or transcellular movement with subsequent vesicular release into the urinary space. We also address the functional consequences of overt albumin endocytosis by podocytes, such as the formation of pro‐inflammatory cytokines, which might eventually result in a deterioration of podocyte function. Finally, we consider the diagnostic potential of podocyte‐derived albumin‐containing vesicles in the urine as an early marker of a compromised glomerular barrier function. In terms of new technical approaches, the review covers how our knowledge of the movement of albumin across the glomerular filtration barrier has expanded by the use of new intravital imaging techniques.


Seminars in Nephrology | 2016

Just Look! Intravital Microscopy as the Best Means to Study Kidney Cell Death Dynamics

Ina Maria Schießl; Anna Hammer; Anne Riquier-Brison; Janos Peti-Peterdi

Kidney cell death plays a key role in the progression of life-threatening renal diseases, such as acute kidney injury and chronic kidney disease. Injured and dying epithelial and endothelial cells take part in complex communication with the innate immune system, which drives the progression of cell death and the decrease in renal function. To improve our understanding of kidney cell death dynamics and its impact on renal disease, a study approach is needed that facilitates the visualization of renal function and morphology in real time. Intravital multiphoton microscopy of the kidney has been used for more than a decade and made substantial contributions to our understanding of kidney physiology and pathophysiology. It is a unique tool that relates renal structure and function in a time- and spatial-dependent manner. Basic renal function, such as microvascular blood flow regulation and glomerular filtration, can be determined in real time and homeostatic alterations, which are linked inevitably to cell death and can be depicted down to the subcellular level. This review provides an overview of the available techniques to study kidney dysfunction and inflammation in terms of cell death in vivo, and addresses how this novel approach can be used to improve our understanding of cell death dynamics in renal disease.


Current Opinion in Nephrology and Hypertension | 2015

Regulation of NKCC2 splicing and phosphorylation.

Ina Maria Schießl; Hayo Castrop

Purpose of reviewTransepithelial salt transport in the thick ascending limb of Henles loop (TAL) crucially depends on the activity of the Na/K/2Cl cotransporter NKCC2. The pharmacologic blockade of NKCC2 leads to pronounced natriuresis and diuresis, which indicate key roles for NKCC2 in renal salt retrieval. The inadequate regulation of NKCC2 and the loss of NKCC2 function are associated with the disruption of salt and water homoeostasis. This review provides a specific overview of our current knowledge with respect to the regulation of NKCC2 by differential splicing and phosphorylation. Recent findingsSeveral mechanisms have evolved to adapt NKCC2 transport to reabsorptive needs. These mechanisms include the regulation of NKCC2 gene expression, the differential splicing of the NKCC2 pre-mRNA, the membrane trafficking, and the modulation of the specific transport activity. Substantial progress has been made over the past few years in deciphering the function of kinases in the regulatory network controlling NKCC2 activity and in elucidating the underlying mechanism and the functional consequences of the regulated differential splicing of the NKCC2 pre-mRNA. SummaryNKCC2 differential splicing and phosphorylation are critically involved in the modulation of the thick ascending limb of Henles loop reabsorptive capacity and, consequently, in salt homoeostasis, volume regulation, and blood pressure control.

Collaboration


Dive into the Ina Maria Schießl's collaboration.

Top Co-Authors

Avatar

Hayo Castrop

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar

Anna Hammer

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhard Gess

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Schweda

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge