Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iñaki Ruiz-Trillo is active.

Publication


Featured researches published by Iñaki Ruiz-Trillo.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians

Iñaki Ruiz-Trillo; Jordi Paps; Mercè Loukota; Carles Ribera; Ulf Jondelius; Jaume Baguñà; Marta Riutort

Bilateria are currently subdivided into three superclades: Deuterostomia, Ecdysozoa, and Lophotrochozoa. Within this new taxonomic frame, acoelomate Platyhelminthes, for a long time held to be basal bilaterians, are now considered spiralian lophotrochozoans. However, recent 18S rDNA [small subunit (SSU)] analyses have shown Platyhelminthes to be polyphyletic with two of its orders, the Acoela and the Nemertodermatida, as the earliest extant bilaterians. To corroborate such position and avoid the criticisms of saturation and long-branch effects thrown on the SSU molecule, we have searched for independent molecular data bearing good phylogenetic information at deep evolutionary nodes. Here we report a phylogenetic analysis of DNA sequences from the myosin heavy chain type II (myosin II) gene from a large set of metazoans, including acoels and nemertodermatids. Our study demonstrates, both for the myosin II data set alone and for a combined SSU + myosin II data set, that Platyhelminthes are polyphyletic and that acoels and nemertodermatids are the extant earliest bilaterians. Hence, the common bilaterian ancestor was not, as currently held, large and complex but small, simple, and likely with direct development. This scenario has far-reaching implications for understanding the evolution of major body plans and for perceptions of the Cambrian evolutionary explosion.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Ancient origin of the integrin-mediated adhesion and signaling machinery

Arnau Sebé-Pedrós; Andrew J. Roger; Franz B. Lang; Nicole King; Iñaki Ruiz-Trillo

The evolution of animals (metazoans) from their unicellular ancestors required the emergence of novel mechanisms for cell adhesion and cell–cell communication. One of the most important cell adhesion mechanisms for metazoan development is integrin-mediated adhesion and signaling. The integrin adhesion complex mediates critical interactions between cells and the extracellular matrix, modulating several aspects of cell physiology. To date this machinery has been considered strictly metazoan specific. Here we report the results of a comparative genomic analysis of the integrin adhesion machinery, using genomic data from several unicellular relatives of Metazoa and Fungi. Unexpectedly, we found that core components of the integrin adhesion complex are encoded in the genome of the apusozoan protist Amastigomonas sp., and therefore their origins predate the divergence of Opisthokonta, the clade that includes metazoans and fungi. Furthermore, our analyses suggest that key components of this apparatus have been lost independently in fungi and choanoflagellates. Our data highlight the fact that many of the key genes that had formerly been cited as crucial for metazoan origins have a much earlier origin. This underscores the importance of gene cooption in the unicellular-to-multicellular transition that led to the emergence of the Metazoa.


Nature Communications | 2013

The Capsaspora genome reveals a complex unicellular prehistory of animals

Hiroshi Suga; Zehua Chen; Alex de Mendoza; Arnau Sebé-Pedrós; Matthew W. Brown; Eric Kramer; Martin Carr; Pierre Kerner; Michel Vervoort; Núria Sánchez-Pons; Guifré Torruella; Romain Derelle; Gerard Manning; B. Franz Lang; Carsten Russ; Brian J. Haas; Andrew J. Roger; Chad Nusbaum; Iñaki Ruiz-Trillo

To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans’ unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans.


Molecular Biology and Evolution | 2011

Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki

Arnau Sebé-Pedrós; Alex de Mendoza; B. Franz Lang; Bernard M. Degnan; Iñaki Ruiz-Trillo

How animals (metazoans) originated from their single-celled ancestors remains a major question in biology. As transcriptional regulation is crucial to animal development, deciphering the early evolution of associated transcription factors (TFs) is critical to understanding metazoan origins. In this study, we uncovered the repertoire of 17 metazoan TFs in the amoeboid holozoan Capsaspora owczarzaki, a representative of a unicellular lineage that is closely related to choanoflagellates and metazoans. Phylogenetic and comparative genomic analyses with the broadest possible taxonomic sampling allowed us to formulate new hypotheses regarding the origin and evolution of developmental metazoan TFs. We show that the complexity of the TF repertoire in C. owczarzaki is strikingly high, pushing back further the origin of some TFs formerly thought to be metazoan specific, such as T-box or Runx. Nonetheless, TF families whose beginnings antedate the origin of the animal kingdom, such as homeodomain or basic helix-loop-helix, underwent significant expansion and diversification along metazoan and eumetazoan stems.


Zoologica Scripta | 2002

The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes

Ulf Jondelius; Iñaki Ruiz-Trillo; Jaume Baguñà; Marta Riutort

Recent hypotheses on metazoan phylogeny have recognized three main clades of bilaterian animals: Deuterostomia, Ecdysozoa and Lophotrochozoa. The acoelomate and ‘pseudocoelomate’ metazoans, including the Platyhelminthes, long considered basal bilaterians, have been referred to positions within these clades by many authors. However, a recent study based on ribosomal DNA placed the flatworm group Acoela as the sister group of all other extant bilaterian lineages. Unexpectedly, the nemertodermatid flatworms, usually considered the sister group of the Acoela together forming the Acoelomorpha, were grouped separately from the Acoela with the rest of the Platyhelminthes (the Rhabditophora) within the Lophotrochozoa. To re‐evaluate and clarify the phylogenetic position of the Nemertodermatida, new sequence data from 18S ribosomal DNA and mitochondrial genes of nemertodermatid and other bilaterian species were analysed with parsimony and maximum likelihood methods. The analyses strongly support a basal position within the Bilateria for the Nemertodermatida as a sister group to all other bilaterian taxa except the Acoela. Despite the basal position of both Nemertodermatida and Acoela, the clade Acoelomorpha was not retrieved. These results imply that the last common ancestor of bilaterian metazoans was a small, benthic, direct developer without segments, coelomic cavities, nephrida or a true brain. The name Nephrozoa is proposed for the ancestor of all bilaterians excluding the Nemertodermatida and the Acoela, and its descendants.


Molecular Biology and Evolution | 2012

Phylogenetic Relationships within the Opisthokonta Based on Phylogenomic Analyses of Conserved Single-Copy Protein Domains

Guifré Torruella; Romain Derelle; Jordi Paps; B. Franz Lang; Andrew J. Roger; Kamran Shalchian-Tabrizi; Iñaki Ruiz-Trillo

Many of the eukaryotic phylogenomic analyses published to date were based on alignments of hundreds to thousands of genes. Frequently, in such analyses, the most realistic evolutionary models currently available are often used to minimize the impact of systematic error. However, controversy remains over whether or not idiosyncratic gene family dynamics (i.e., gene duplications and losses) and incorrect orthology assignments are always appropriately taken into account. In this paper, we present an innovative strategy for overcoming orthology assignment problems. Rather than identifying and eliminating genes with paralogy problems, we have constructed a data set comprised exclusively of conserved single-copy protein domains that, unlike most of the commonly used phylogenomic data sets, should be less confounded by orthology miss-assignments. To evaluate the power of this approach, we performed maximum likelihood and Bayesian analyses to infer the evolutionary relationships within the opisthokonts (which includes Metazoa, Fungi, and related unicellular lineages). We used this approach to test 1) whether Filasterea and Ichthyosporea form a clade, 2) the interrelationships of early-branching metazoans, and 3) the relationships among early-branching fungi. We also assessed the impact of some methods that are known to minimize systematic error, including reducing the distance between the outgroup and ingroup taxa or using the CAT evolutionary model. Overall, our analyses support the Filozoa hypothesis in which Ichthyosporea are the first holozoan lineage to emerge followed by Filasterea, Choanoflagellata, and Metazoa. Blastocladiomycota appears as a lineage separate from Chytridiomycota, although this result is not strongly supported. These results represent independent tests of previous phylogenetic hypotheses, highlighting the importance of sophisticated approaches for orthology assignment in phylogenomic analyses.


Science Signaling | 2012

Genomic Survey of Premetazoans Shows Deep Conservation of Cytoplasmic Tyrosine Kinases and Multiple Radiations of Receptor Tyrosine Kinases

Hiroshi Suga; Michael Dacre; Alex de Mendoza; Kamran Shalchian-Tabrizi; Gerard Manning; Iñaki Ruiz-Trillo

A genomic survey suggests that cytoplasmic tyrosine kinases diversified before the establishment of multicellular organisms. Tracing Tyrosine Kinase Evolution Protein tyrosine kinases, which are involved in diverse cellular functions, are broadly classified as cytoplasmic tyrosine kinases and receptor tyrosine kinases. Because tyrosine kinases played important roles in the evolution of multicellular organisms, Suga et al. investigated the evolution of this group of kinases by performing a genomic screen of the tyrosine kinase–encoding genes of the only two known members of the Filasterea, a type of single-celled eukaryote. Through phylogenetic analysis and by comparing tyrosine kinase–encoding sequences from the Filasterea with those from other organisms, such as animals (metazoans) and choanoflagellates (unicellular organisms considered to be the closest relatives to metazoans), the authors showed that cytoplasmic tyrosine kinases were established and diversified before the divergence between the Filasterea, choanoflagellates, and metazoans, whereas receptor tyrosine kinases evolved rapidly and separately in each of the three lineages after their split. The differences in the speed and mode of evolution between cytoplasmic tyrosine kinases and receptor tyrosine kinases raise interesting questions about the roles of these tyrosine kinases in unicellular organisms. The evolution of multicellular metazoans from a unicellular ancestor is one of the most important advances in the history of life. Protein tyrosine kinases play important roles in cell-to-cell communication, cell adhesion, and differentiation in metazoans; thus, elucidating their origins and early evolution is crucial for understanding the origin of metazoans. Although tyrosine kinases exist in choanoflagellates, few data are available about their existence in other premetazoan lineages. To unravel the origin of tyrosine kinases, we performed a genomic and polymerase chain reaction (PCR)–based survey of the genes that encode tyrosine kinases in the two described filasterean species, Capsaspora owczarzaki and Ministeria vibrans, the closest relatives to the Metazoa and Choanoflagellata clades. We present 103 tyrosine kinase–encoding genes identified in the whole genome sequence of C. owczarzaki and 15 tyrosine kinase–encoding genes cloned by PCR from M. vibrans. Through detailed phylogenetic analysis, comparison of the organizations of the protein domains, and resequencing and revision of tyrosine kinase sequences previously found in some whole genome sequences, we demonstrate that the basic repertoire of metazoan cytoplasmic tyrosine kinases was established before the divergence of filastereans from the Metazoa and Choanoflagellata clades. In contrast, the receptor tyrosine kinases diversified extensively in each of the filasterean, choanoflagellate, and metazoan clades. This difference in the divergence patterns between cytoplasmic tyrosine kinases and receptor tyrosine kinases suggests that receptor tyrosine kinases that had been used for receiving environmental cues were subsequently recruited as a communication tool between cells at the onset of metazoan multicellularity.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages

Alex de Mendoza; Arnau Sebé-Pedrós; Martin Sebastijan Šestak; Marija Matejčić; Guifré Torruella; Tomislav Domazet-Lošo; Iñaki Ruiz-Trillo

Significance Independent transitions to multicellularity in eukaryotes involved the evolution of complex transcriptional regulation toolkits to control cell differentiation. By using comparative genomics, we show that plants and animals required richer transcriptional machineries compared with other eukaryotic multicellular lineages. We suggest this is due to their orchestrated embryonic development. Moreover, our analysis of transcription factor (TF) expression patterns during the development of animals reveal links between TF evolution, species ontogeny, and the phylotypic stage. Transcription factors (TFs) are the main players in transcriptional regulation in eukaryotes. However, it remains unclear what role TFs played in the origin of all of the different eukaryotic multicellular lineages. In this paper, we explore how the origin of TF repertoires shaped eukaryotic evolution and, in particular, their role into the emergence of multicellular lineages. We traced the origin and expansion of all known TFs through the eukaryotic tree of life, using the broadest possible taxon sampling and an updated phylogenetic background. Our results show that the most complex multicellular lineages (i.e., those with embryonic development, Metazoa and Embryophyta) have the most complex TF repertoires, and that these repertoires were assembled in a stepwise manner. We also show that a significant part of the metazoan and embryophyte TF toolkits evolved earlier, in their respective unicellular ancestors. To gain insights into the role of TFs in the development of both embryophytes and metazoans, we analyzed TF expression patterns throughout their ontogeny. The expression patterns observed in both groups recapitulate those of the whole transcriptome, but reveal some important differences. Our comparative genomics and expression data reshape our view on how TFs contributed to eukaryotic evolution and reveal the importance of TFs to the origins of multicellularity and embryonic development.


Trends in Ecology and Evolution | 2014

The others: our biased perspective of eukaryotic genomes

Javier Campo; Michael E. Sieracki; Robert Molestina; Patrick J. Keeling; Ramon Massana; Iñaki Ruiz-Trillo

Understanding the origin and evolution of the eukaryotic cell and the full diversity of eukaryotes is relevant to many biological disciplines. However, our current understanding of eukaryotic genomes is extremely biased, leading to a skewed view of eukaryotic biology. We argue that a phylogeny-driven initiative to cover the full eukaryotic diversity is needed to overcome this bias. We encourage the community: (i) to sequence a representative of the neglected groups available at public culture collections, (ii) to increase our culturing efforts, and (iii) to embrace single cell genomics to access organisms refractory to propagation in culture. We hope that the community will welcome this proposal, explore the approaches suggested, and join efforts to sequence the full diversity of eukaryotes.


BMC Evolutionary Biology | 2010

Evolution of the MAGUK protein gene family in premetazoan lineages

Alex de Mendoza; Hiroshi Suga; Iñaki Ruiz-Trillo

BackgroundCell-to-cell communication is a key process in multicellular organisms. In multicellular animals, scaffolding proteins belonging to the family of membrane-associated guanylate kinases (MAGUK) are involved in the regulation and formation of cell junctions. These MAGUK proteins were believed to be exclusive to Metazoa. However, a MAGUK gene was recently identified in an EST survey of Capsaspora owczarzaki, an unicellular organism that branches off near the metazoan clade. To further investigate the evolutionary history of MAGUK, we have undertook a broader search for this gene family using available genomic sequences of different opisthokont taxa.ResultsOur survey and phylogenetic analyses show that MAGUK proteins are present not only in Metazoa, but also in the choanoflagellate Monosiga brevicollis and in the protist Capsaspora owczarzaki. However, MAGUKs are absent from fungi, amoebozoans or any other eukaryote. The repertoire of MAGUKs in Placozoa and eumetazoan taxa (Cnidaria + Bilateria) is quite similar, except for one class that is missing in Trichoplax, while Porifera have a simpler MAGUK repertoire. However, Vertebrata have undergone several independent duplications and exhibit two exclusive MAGUK classes. Three different MAGUK types are found in both M. brevicollis and C. owczarzaki: DLG, MPP and MAGI. Furthermore, M. brevicollis has suffered a lineage-specific diversification.ConclusionsThe diversification of the MAGUK protein gene family occurred, most probably, prior to the divergence between Metazoa+choanoflagellates and the Capsaspora+Ministeria clade. A MAGI-like, a DLG-like, and a MPP-like ancestral genes were already present in the unicellular ancestor of Metazoa, and new gene members have been incorporated through metazoan evolution within two major periods, one before the sponge-eumetazoan split and another within the vertebrate lineage. Moreover, choanoflagellates have suffered an independent MAGUK diversification. This study highlights the importance of generating enough genome data from the broadest possible taxonomic sampling, in order to fully understand the evolutionary history of major protein gene families.

Collaboration


Dive into the Iñaki Ruiz-Trillo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Suga

Prefectural University of Hiroshima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javier Campo

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge