Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inara Akopjana is active.

Publication


Featured researches published by Inara Akopjana.


Applied Categorical Structures | 2014

Rapid Proton-Detected NMR Assignment for Proteins with Fast Magic Angle Spinning

Emeline Barbet-Massin; Andrew J. Pell; Joren S. Retel; Loren B. Andreas; Kristaps Jaudzems; W. Trent Franks; Andrew J. Nieuwkoop; Matthias Hiller; Victoria A. Higman; Paul Guerry; Andrea Bertarello; Michael J. Knight; Michele Felletti; Tanguy Le Marchand; Svetlana Kotelovica; Inara Akopjana; Kaspars Tars; Monica Stoppini; Vittorio Bellotti; Martino Bolognesi; Stefano Ricagno; James J. Chou; Robert G. Griffin; Hartmut Oschkinat; Anne Lesage; Lyndon Emsley; Torsten Herrmann; Guido Pintacuda

Using a set of six 1H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5–30 kDa proteins. The approach relies on perdeuteration, amide 2H/1H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary 13C/15N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Structure of fully protonated proteins by proton-detected magic-angle spinning NMR.

Loren B. Andreas; Kristaps Jaudzems; Jan Stanek; D. Lalli; Andrea Bertarello; Tanguy Le Marchand; Diane Cala-De Paepe; Svetlana Kotelovica; Inara Akopjana; Benno Knott; Sebastian Wegner; Frank Engelke; Anne Lesage; Lyndon Emsley; Kaspars Tars; Torsten Herrmann; Guido Pintacuda

Significance Protein structure determination is key to the detailed description of many biological processes. The critical factor that would allow general application of magic-angle spinning (MAS) solid-state NMR to this end is improvement in sensitivity and resolution for as many nuclear spins as possible. This is achieved here with detection of resolved 1H resonances in protonated proteins by increasing MAS rates to frequencies of 100 kHz and above. For large proteins and assemblies, ultrafast spinning narrows spectral resonances better than Brownian motion on which solution NMR relies, removing a fundamental barrier to the NMR study of large systems. This is exploited here to determine the de novo structure of a 28-kDa protein dimer in a 2.5-MDa viral capsid assembly. Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of 1H-1H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.


Angewandte Chemie | 2016

NMR Spectroscopic Assignment of Backbone and Side-Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils.

Jan Stanek; Loren B. Andreas; Kristaps Jaudzems; Diane Cala; D. Lalli; Andrea Bertarello; Tobias Schubeis; Inara Akopjana; Svetlana Kotelovica; Kaspars Tars; Andrea Pica; Serena Leone; Delia Picone; Zhi-Qiang Xu; Nicholas E. Dixon; Denis Martinez; Mélanie Berbon; Nadia El Mammeri; Abdelmajid Noubhani; Sven J. Saupe; Birgit Habenstein; Antoine Loquet; Guido Pintacuda

We demonstrate sensitive detection of alpha protons of fully protonated proteins by solid-state NMR spectroscopy with 100-111 kHz magic-angle spinning (MAS). The excellent resolution in the Cα-Hα plane is demonstrated for 5 proteins, including microcrystals, a sedimented complex, a capsid and amyloid fibrils. A set of 3D spectra based on a Cα-Hα detection block was developed and applied for the sequence-specific backbone and aliphatic side-chain resonance assignment using only 500 μg of sample. These developments accelerate structural studies of biomolecular assemblies available in submilligram quantities without the need of protein deuteration.


Nature Communications | 2016

Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ

Roman I. Koning; Josué Gómez-Blanco; Inara Akopjana; Javier Vargas; Andris Kazaks; Kaspars Tars; José María Carazo; Abraham J. Koster

In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly.


PLOS ONE | 2013

A VLP Library of C-Terminally Truncated Hepatitis B Core Proteins: Correlation of RNA Encapsidation with a Th1/Th2 Switch in the Immune Responses of Mice

Irina Sominskaya; Dace Skrastina; Ivars Petrovskis; Andris Dishlers; Ieva Berza; Maria Mihailova; Juris Jansons; Inara Akopjana; Irina Stahovska; Dzidra Dreilina; Velta Ose; Paul Pumpens

An efficient pBR327- and Ptrp-based E. coli expression system was used to generate a large-scale library of virus like particles (VLP) formed by recombinant hepatitis B virus (HBV) core (HBc) protein derivatives. To construct the library, the gene of HBc protein of the genotype D/subtype ayw2 virus was gradually truncated from the 3`-end and twenty-two HBc variants (with truncation up to 139 aa) were expressed at high levels. The proteins were purified by salt precipitation and gel filtration. Background RNA binding was observed for VLPs formed by HBc1-149, which lacked all C-terminal Arg blocks, and the addition of three Arg residues (HBc1-152) only slightly increased RNA binding. The presence of two Arg blocks (proteins HBc1-162 and HBc1-163) resulted in approximately half of the typical level of RNA binding, and the presence of three blocks (protein HBc1-171) led to approximately 85% of the typical level of binding. Only a small increase in the level of RNA binding was found for the HBc1-175 VLPs, which contained all four Arg blocks but lacked the last 8 aa of the full-length HBc protein. VLPs containing high levels of RNA had higher antigenicity according to an ELISA with anti-HBc mAbs than the VLPs formed by HBc variants without C-terminal Arg blocks and lacking RNA. The results indicate that the VLPs were stabilised by nucleic acids. The immunogenicity in BALB/c mice was comparable for VLPs formed by different HBc proteins, but a clear switch from a Th1 response to a Th2 response occurred after the loss of encapsidated RNA. We did not observe significant differences in lymphocyte proliferation in vitro for the tested VLP variants; however, the loss of RNA encapsidation correlated with a decreased level of IFN-γ induction, which is a measure of the potential CTL activity of immunogens.


Biochimica et Biophysica Acta | 2015

Crystal Structures of the Erp Protein Family Members Erpp and Erpc from Borrelia Burgdorferi Reveal the Reason for Different Affinities for Complement Regulator Factor H.

Kalvis Brangulis; Ivars Petrovskis; Andris Kazaks; Inara Akopjana; Kaspars Tars

Borrelia burgdorferi is the causative agent of Lyme disease, which can be acquired after the bite of an infected Ixodes tick. As a strategy to resist the innate immunity and to successfully spread and proliferate, B. burgdorferi expresses a set of outer membrane proteins that are capable of binding complement regulator factor H (CFH), factor H-like protein 1 (CFHL-1) and factor H-related proteins (CFHR) to avoid complement-mediated killing. B. burgdorferi B31 contains three proteins that belong to the Erp (OspE/F-related) protein family and are capable of binding CFH and some CFHRs, namely ErpA, ErpC and ErpP. We have determined the crystal structure of ErpP at 2.53Å resolution and the crystal structure of ErpC at 2.15Å resolution. Recently, the crystal structure of the Erp family member OspE from B. burgdorferi N40 was determined in complex with CFH domains 19-20, revealing the residues involved in the complex formation. Despite the high sequence conservation between ErpA, ErpC, ErpP and the homologous protein OspE (78-80%), the affinity for CFH and CFHRs differs markedly among the Erp family members, suggesting that ErpC may bind only CFHRs but not CFH. A comparison of the binding site in OspE with those of ErpC and ErpP revealed that the extended loop region, which is only observed in the potential binding site of ErpC, plays an important role by preventing the binding of CFH. These results can explain the inability of ErpC to bind CFH, whereas ErpP and ErpA still possess the ability to bind CFH.


Protein Expression and Purification | 2014

Expression and purification of active, stabilized trimethyllysine hydroxylase

Andris Kazaks; Marina Makrecka-Kuka; Janis Kuka; Tatyana Voronkova; Inara Akopjana; Solveiga Grinberga; Osvalds Pugovics; Kaspars Tars

Trimethyllysine hydroxylase (TMLH) catalyses the first step in carnitine biosynthesis - the conversion of N6,N6,N6-trimethyl-l-lysine to 3-hydroxy-N6,N6,N6-trimethyl-l-lysine. By changing carnitine availability it is possible to optimise cardiac energy metabolism, that is beneficial under certain ischemic conditions. Previous efforts have been devoted towards the inhibition of gamma-butyrobetaine dioxygenase, which catalyses the last step in carnitine biosynthesis. However, the effects of TMLH activity regulation are currently unexplored. To facilitate the development of specific ligands of TMLH, large quantities of recombinant protein are necessary for downstream binding and structural studies. Here, we describe an efficient system for expressing and purifying active and stable TMLH as a maltose-binding protein fusion in Escherichiacoli.


BMC Biotechnology | 2017

Production and purification of chimeric HBc virus-like particles carrying influenza virus LAH domain as vaccine candidates

Andris Kazaks; I-Na Lu; Sophie Farinelle; Alex Ramirez; Vincenzo Crescente; Benjamin Blaha; Olotu Ogonah; Tarit Mukhopadhyay; Mapi Perez de Obanos; Alejandro Krimer; Inara Akopjana; Janis Bogans; Velta Ose; Anna Kirsteina; Tatjana Kazaka; Nicola J. Stonehouse; David J. Rowlands; Claude P. Muller; Kaspars Tars; William Rosenberg

BackgroundThe lack of a universal influenza vaccine is a global health problem. Interest is now focused on structurally conserved protein domains capable of eliciting protection against a broad range of influenza virus strains. The long alpha helix (LAH) is an attractive vaccine component since it is one of the most conserved influenza hemagglutinin (HA) stalk regions. For an improved immune response, the LAH domain from H3N2 strain has been incorporated into virus-like particles (VLPs) derived from hepatitis B virus core protein (HBc) using recently developed tandem core technology.ResultsFermentation conditions for recombinant HBc-LAH were established in yeast Pichia pastoris and a rapid and efficient purification method for chimeric VLPs was developed to match the requirements for industrial scale-up. Purified VLPs induced strong antibody responses against both group 1 and group 2 HA proteins in mice.ConclusionOur results indicate that the tandem core technology is a useful tool for incorporation of highly hydrophobic LAH domain into HBc VLPs. Chimeric VLPs can be successfully produced in bioreactor using yeast expression system. Immunologic data indicate that HBc VLPs carrying the LAH antigen represent a promising universal influenza vaccine component.


Journal of Structural Biology | 2015

Structural and functional analysis of BB0689 from Borrelia burgdorferi, a member of the bacterial CAP superfamily

Kalvis Brangulis; Kristaps Jaudzems; Ivars Petrovskis; Inara Akopjana; Andris Kazaks; Kaspars Tars

Spirochete Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted from infected Ixodes ticks to a mammalian host after a tick bite. The outer surface protein BB0689 from B. burgdorferi is up-regulated when the tick feeds, which indicates a potential role for BB0689 in Lyme disease pathogenesis. We have determined the crystal structure of BB0689, which revealed that the protein belongs to the CAP superfamily. Though the CAP domain is widespread in all three cellular domains of life, thus far the CAP domain has been studied only in eukaryotes, in which it is usually linked to certain other domains to form a multi-domain protein and is associated with the mammalian reproductive tract, the plant response to pathogens, venom allergens from insects and reptiles, and the growth of human brain tumors. Though the exact function of the isolated CAP domain remains ambiguous, several functions, including the binding of cholesterol, lipids and heparan sulfate, have been recently attributed to different CAP domain proteins. In this study, the bacterial CAP domain structure was analyzed and compared with the previously solved crystal structures of representative CAPs, and the function of BB0689 was examined. To determine the potential function of BB0689 and ascertain whether the functions that have been attributed to the CAP domain proteins are conserved, the binding of previously reported CAP domain interaction partners was analyzed, and the results suggested that BB0689 has a unique function that is yet to be discovered.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2016

Crystal structure of Plasmodium falciparum proplasmepsin IV: the plasticity of proplasmepsins.

Rosario Recacha; Kristaps Jaudzems; Inara Akopjana; Aigars Jirgensons; Kaspars Tars

Plasmepsin IV from Plasmodium falciparum (PM IV) is a promising target for the development of novel antimalarial drugs. Here, the crystal structure of the truncated zymogen of PM IV (pPM IV), consisting of the mature enzyme plus a prosegment of 47 residues, has been determined at 1.5 Å resolution. pPM IV presents the fold previously described for studied proplasmepsins, displaying closer similarities to proplasmepin IV from P. vivax (pPvPM) than to the other two proplasmepsins from P. falciparum. The study and comparison of the pPM IV structure with the proplasmepsin structures described previously provide information about the similarities and differences in the inactivation-activation mechanisms among the plasmepsin zymogens.

Collaboration


Dive into the Inara Akopjana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristaps Jaudzems

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Svetlana Kotelovica

Latvian Biomedical Research and Study centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andris Kazaks

Latvian Biomedical Research and Study centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge