Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inbal Mishalian is active.

Publication


Featured researches published by Inbal Mishalian.


Cell Reports | 2015

Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer

Jitka Y. Sagiv; Janna Michaeli; Simaan Assi; Inbal Mishalian; Hen Kisos; Liran Levy; Pazzit Damti; Delphine Lumbroso; Lola Polyansky; Ronit Vogt Sionov; Amiram Ariel; Avi-Hai Hovav; Erik Henke; Zvi G. Fridlender; Zvi Granot

Controversy surrounds neutrophil function in cancer because neutrophils were shown to provide both pro- and antitumor functions. We identified a heterogeneous subset of low-density neutrophils (LDNs) that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression. LDNs display impaired neutrophil function and immunosuppressive properties, characteristics that are in stark contrast to those of mature, high-density neutrophils (HDNs). LDNs consist of both immature myeloid-derived suppressor cells (MDSCs) and mature cells that are derived from HDNs in a TGF-β-dependent mechanism. Our findings identify three distinct populations of circulating neutrophils and challenge the concept that mature neutrophils have limited plasticity. Furthermore, our findings provide a mechanistic explanation to mitigate the controversy surrounding neutrophil function in cancer.


PLOS ONE | 2012

Transcriptomic Analysis Comparing Tumor-Associated Neutrophils with Granulocytic Myeloid-Derived Suppressor Cells and Normal Neutrophils

Zvi G. Fridlender; Jing Sun; Inbal Mishalian; Sunil Singhal; Guanjun Cheng; Veena Kapoor; Wenhwai Horng; Gil Fridlender; Rachel Bayuh; G. Scott Worthen; Steven M. Albelda

The role of myeloid cells in supporting cancer growth is well established. Most work has focused on myeloid-derived suppressor cells (MDSC) that accumulate in tumor-bearing animals, but tumor-associated neutrophils (TAN) are also known to be capable of augmenting tumor growth. However, little is known about their evolution, phenotype, and relationship to naïve neutrophils (NN) and to the granulocytic fraction of MDSC (G-MDSC). In the current study, a transcriptomics approach was used in mice to compare these cell types. Our data show that the three populations of neutrophils are significantly different in their mRNA profiles with NN and G-MDSC being more closely related to each other than to TAN. Structural genes and genes related to cell-cytotoxicity (i.e. respiratory burst) were significantly down-regulated in TAN. In contrast, many immune-related genes and pathways, including genes related to the antigen presenting complex (e.g. all six MHC-II complex genes), and cytokines (e.g. TNF-α, IL-1-α/β), were up-regulated in G-MDSC, and further up-regulated in TAN. Thirteen of the 25 chemokines tested were markedly up-regulated in TAN compared to NN, including striking up-regulation of chemoattractants for T/B-cells, neutrophils and macrophages. This study characterizes different populations of neutrophils related to cancer, pointing out the major differences between TAN and the other neutrophil populations.


The EMBO Journal | 2006

A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues

Carlos Hidalgo-Grass; Inbal Mishalian; Mary Dan-Goor; Ilia Belotserkovsky; Yoni Eran; Victor Nizet; Amnon Peled; Emanuel Hanski

Group A Streptococcus (GAS) causes the life‐threatening infection in humans known as necrotizing fasciitis (NF). Infected subcutaneous tissues from an NF patient and mice challenged with the same GAS strain possessed high bacterial loads but a striking paucity of infiltrating polymorphonuclear leukocytes (PMNs). Impaired PMN recruitment was attributed to degradation of the chemokine IL‐8 by a GAS serine peptidase. Here, we use bioinformatics approach coupled with target mutagenesis to identify this peptidase as ScpC. We show that SilCR pheromone downregulates scpC transcription via the two‐component system—SilA/B. In addition, we demonstrate that in vitro, ScpC degrades the CXC chemokines: IL‐8 (human), KC, and MIP‐2 (both murine). Furthermore, using a murine model of human NF, we demonstrate that ScpC, but not the C5a peptidase ScpA, is an essential virulence factor. An ScpC‐deficient mutant is innocuous for untreated mice but lethal for PMN‐depleted mice. ScpC degrades KC and MIP‐2 locally in the infected skin tissues, inhibiting PMN recruitment. In conclusion, ScpC represents a novel GAS virulence factor functioning to directly inactivate a key element of the host innate immune response.


Cell Host & Microbe | 2008

The IL-8 Protease SpyCEP/ScpC of Group A Streptococcus Promotes Resistance to Neutrophil Killing

Annelies S. Zinkernagel; Anjuli M. Timmer; Morgan A. Pence; Jeffrey B. Locke; John T. Buchanan; Claire E. Turner; Inbal Mishalian; Shiranee Sriskandan; Emanuel Hanski; Victor Nizet

Interleukin-8 (IL-8) promotes neutrophil-mediated host defense through its chemoattractant and immunostimulatory activities. The Group A Streptococcus (GAS) protease SpyCEP (also called ScpC) cleaves IL-8, and SpyCEP expression is strongly upregulated in vivo in the M1T1 GAS strains associated with life-threatening systemic disease including necrotizing fasciitis. Coupling allelic replacement with heterologous gene expression, we show that SpyCEP is necessary and sufficient for IL-8 degradation. SpyCEP decreased IL-8-dependent neutrophil endothelial transmigration and bacterial killing, the latter by reducing neutrophil extracellular trap formation. The knockout mutant lacking SpyCEP was attenuated for virulence in murine infection models, and SpyCEP expression conferred protection to coinfecting bacteria. We also show that the zoonotic pathogen Streptococcus iniae possesses a functional homolog of SpyCEP (CepI) that cleaves IL-8, promotes neutrophil resistance, and contributes to virulence. By inactivating the multifunctional host defense peptide IL-8, the SpyCEP protease impairs neutrophil clearance mechanisms, contributing to the pathogenesis of invasive streptococcal infection.


Cancer Immunology, Immunotherapy | 2013

Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression

Inbal Mishalian; Rachel Bayuh; Liran Levy; Lida Zolotarov; Janna Michaeli; Zvi G. Fridlender

Abstract The role and characteristics of tumor-associated neutrophils (TAN) in cancer are poorly defined. We have recently shown that TAN can have anti-tumorigenic (N1) or pro-tumorigenic (N2) functions. An interesting unanswered question is how the phenotype of TAN is influenced by the ongoing evolvement of tumor microenvironment. We therefore studied the phenotype and effects of TAN at different time points during tumor progression. We used two models of murine tumor cancer cell lines—Lewis lung carcinoma (LLC) and AB12 (mesothelioma). Neutrophils were studied at early and late stages and compared to each other and to neutrophils from bone marrow/periphery of naïve mice. Although there was no difference in the number of neutrophils entering the tumor, we found that at early stages of tumor development, neutrophils were almost exclusively at the periphery of the tumor. Only at later stages, neutrophils were also found scattered among the tumor cells. We further found that TAN from early tumors are more cytotoxic toward tumor cells and produce higher levels of TNF-α, NO and H2O2. In established tumors, these functions are down-regulated and TAN acquire a more pro-tumorigenic phenotype. In line with this phenotype, only depletion of neutrophils at later stages of tumor development inhibited tumor growth, possibly due to their central location in the tumor. Our work adds another important layer to the understanding of neutrophils in cancer by further characterizing the changes in TAN during time. Additional research on the functional role of TAN and differences between subsets of TAN is currently underway.


International Journal of Cancer | 2014

Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17—A new mechanism of impaired antitumor immunity

Inbal Mishalian; Rachel Bayuh; Evgeniy Eruslanov; Janna Michaeli; Liran Levy; Lida Zolotarov; Sunil Singhal; Steven M. Albelda; Zvi Granot; Zvi G. Fridlender

The mechanisms by which tumor‐associated neutrophils (TANs) affect tumor growth are to a large extent unknown. Regulatory T‐cells (T‐regs) are functionally immune‐suppressive subsets of T‐cells. Depletion or inhibition of T‐regs can enhance antitumor immunity. We demonstrated both by RT‐PCR and by ELISA that murine TANs secrete significant amounts of the T‐regs chemoattractant, CCL17, much more than circulating or splenic neutrophils, and at a level progressively increasing during tumor development. Migration assays, both in vitro and in vivo, showed recruitment of T‐regs by TANs, which was inhibited with anti‐CCL17 monoclonal antibodies. Systemic neutrophil depletion in tumor‐bearing mice using anti‐Ly6G monoclonal antibodies reduced the migration of T‐regs into the tumors. We further showed, using flow cytometry, that CCL17 secretion by TANs is not limited to mouse models of cancer but is also relevant to human TANs. Our results suggest a new indirect mechanism by which TANs may inhibit antitumor immune activity, thus promoting tumor growth. We further describe, for the first time, a clear link between TANs and T‐regs acting together to impair antitumor immunity.


British Journal of Cancer | 2013

Using macrophage activation to augment immunotherapy of established tumours

Zvi G. Fridlender; Arminder S. Jassar; Inbal Mishalian; L-Cs Wang; Veena Kapoor; Guanjun Cheng; Jing Sun; Sunil Singhal; Liran Levy; Steven M. Albelda

Background:Successful immunotherapy will require alteration of the tumour microenvironment and/or decreased immune suppression. Tumour-associated macrophages (TAMs) are one major factor affecting tumour microenvironment. We hypothesised that altering TAM phenotype would augment the efficacy of immunotherapy.Methods:We and others have reported that 5,6-Dimethylxanthenone-4-acetic-acid (DMXAA, Vadimezan) has the ability to change TAM phenotypes, inducing a tumour microenvironment conducive to antitumour immune responses. We therefore combined DMXAA with active immunotherapies, and evaluated anti-tumour efficacy, immune cell phenotypes (flow cytometry), and tumour microenvironment (RT–PCR).Results:In several different murine models of immunotherapy for lung cancer, DMXAA-induced macrophage activation significantly augmented the therapeutic effects of immunotherapy. By increasing influx of neutrophils and anti-tumour (M1) macrophages to the tumour, DMXAA altered myeloid cell phenotypes, thus changing the intratumoural M2/non-M2 TAM immunoinhibitory ratio. It also altered the tumour microenvironment to be more pro-inflammatory. Modulating macrophages during immunotherapy resulted in increased numbers, activity, and antigen-specificity of intratumoural CD8+ T cells. Macrophage depletion reduced the effect of combining immunotherapy with macrophage activation, supporting the importance of TAMs in the combined effect.Conclusion:Modulating intratumoural macrophages dramatically augmented the effect of immunotherapy. Our observations suggest that addition of agents that activate TAMs to immunotherapy should be considered in future trials.


Molecular Microbiology | 2007

Transcriptional regulation of the sil locus by the SilCR signalling peptide and its implications on group A streptococcus virulence

Yoni Eran; Yoav Getter; Moshe Baruch; Ilia Belotserkovsky; Gilly Padalon; Inbal Mishalian; Andreas Podbielski; Bernd Kreikemeyer; Emanuel Hanski

In the last two decades an increasing number of local outbreaks of invasive group A streptococcus (GAS) infections including necrotizing fasciitis (NF) have been reported. We identified the streptococcal invasion locus (sil) which is essential for virulence of the M14 strain JS95 isolated from an NF patient. This locus contains six genes: silA/B and silD/E encoding two‐component system (TCS) and ABC transporter, respectively, homologous to the corresponding entities in the regulon of Streptococcus pneumoniae involved in genetic competence. Situated between these two units are silC and silCR, which highly overlap and are transcribed from the complementing strand at opposite directions. SilCR is a putative competence stimulating peptide, but in the M14 strain it has a start codon mutation. Deletion of silC or addition of synthetic SilCR attenuates virulence of the M14 strain. Here we found that silC and silCR form a novel regulatory circuit that controls the sil locus transcription. Under non‐inducing conditions silC represses the silCR promoter. Externally added SilCR peptide activates the TCS, which in turn stimulates silCR transcription. Ongoing silCR transcription mediates the repression of the converging and overlapping silC transcript. Transcription of bacteriocin‐like peptide (blp) operon mirrors the inverse relationships between the silC and silCR transcripts. It is upregulated by either addition of SilCR or deletion of silC. Moreover, expression of silC from a plasmid in a silC deleted‐mutant significantly represses blp transcription. Finally, we show that 18% of clinically relevant GAS isolates possess sil and produce SilCR. Based on these results we propose a working model for regulation gene expression and virulence in GAS by the SilCR signalling peptide.


PLOS Pathogens | 2009

Functional Analysis of the Quorum-Sensing Streptococcal Invasion Locus (sil)

Ilia Belotserkovsky; Moshe Baruch; Asaf Peer; Eran Dov; Miriam Ravins; Inbal Mishalian; Merav Persky; Yoav Smith; Emanuel Hanski

Group A streptococcus (GAS) causes a wide variety of human diseases, and at the same time, GAS can also circulate without producing symptoms, similar to its close commensal relative, group G streptococcus (GGS). We previously identified, by transposon-tagged mutagenesis, the streptococcal invasion locus (sil). sil is a quorum-sensing regulated locus which is activated by the autoinducer peptide SilCR through the two-component system SilA-SilB. Here we characterize the DNA promoter region necessary for SilA-mediated activation. This site is composed of two direct repeats of 10 bp, separated by a spacer of 11 bp. Fusion of this site to gfp allowed us to systematically introduce single-base substitutions in the repeats region and to assess the relative contribution of various positions to promoter strength. We then developed an algorithm giving different weights to these positions, and performed a chromosome-wide bioinformatics search which was validated by transcriptome analysis. We identified 13 genes, mostly bacteriocin related, that are directly under the control of SilA. Having developed the ability to quantify SilCR signaling via GFP accumulation prompted us to search for GAS and GGS strains that sense and produce SilCR. While the majority of GAS strains lost sil, all GGS strains examined still possess the locus and ∼63% are able to respond to exogenously added SilCR. By triggering the autoinduction circle using a minute concentration of synthetic SilCR, we identified GAS and GGS strains that are capable of sensing and naturally producing SilCR, and showed that SilCR can be sensed across these streptococci species. These findings suggest that sil may be involved in colonization and establishment of commensal host-bacterial relationships.


Journal of Immunology | 2011

Recruited Macrophages Control Dissemination of Group A Streptococcus from Infected Soft Tissues

Inbal Mishalian; Merav Ordan; Amnon Peled; Alexander Maly; Miriam B. Eichenbaum; Miriam Ravins; Tegest Aychek; Steffen Jung; Emanuel Hanski

Group A Streptococcus (GAS) causes diverse infections in humans, ranging from mild to life-threatening invasive diseases, such as necrotizing fasciitis (NF), a rapidly progressing deep tissue infection. Despite prompt treatments, NF remains a significant cause of morbidity and mortality, even in previously healthy individuals. The early recruitment of leukocytes is crucial to the outcome of NF; however, although the role of polymorphonuclear neutrophils (PMNs) in host defense against NF is well established, the role of recruited macrophages remains poorly defined. Using a cutaneous murine model mimicking human NF, we found that mice deficient in TNF-α were highly susceptible to s.c. infections with GAS, and a paucity of macrophages, but not PMNs, was demonstrated. To test whether the effects of TNF-α on the outcome of infection are mediated by macrophages/monocytes, we systemically depleted C57BL/6 mice of monocytes by pharmacological and genetic approaches. Systemic monocyte depletion substantially increased bacterial dissemination from soft tissues without affecting the number of recruited PMNs or altering the bacterial loads in soft tissues. Enhanced GAS dissemination could be reverted by either i.v. injection of monocytes or s.c. administration of peritoneal macrophages. These experiments demonstrated that recruited macrophages play a key role in defense against the extracellular pathogen GAS by limiting its spread from soft tissues.

Collaboration


Dive into the Inbal Mishalian's collaboration.

Top Co-Authors

Avatar

Liran Levy

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Rachel Bayuh

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Zvi G. Fridlender

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Emanuel Hanski

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Lida Zolotarov

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Steven M. Albelda

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Sunil Singhal

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Zvi G. Fridlender

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Amnon Peled

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ilia Belotserkovsky

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge