Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inchan Kwon is active.

Publication


Featured researches published by Inchan Kwon.


ACS Chemical Neuroscience | 2011

A safe, blood-brain barrier permeable triphenylmethane dye inhibits amyloid-β neurotoxicity by generating nontoxic aggregates.

H. Edward Wong; Wei Qi; Hyung-Min Choi; Erik J. Fernandez; Inchan Kwon

Growing evidence suggests that on-pathway amyloid-β (Aβ) oligomers are primary neurotoxic species and have a direct correlation with the onset of Alzheimers disease (AD). One promising therapeutic strategy to block AD progression is to reduce the levels of these neurotoxic Aβ species using small molecules. While several compounds have been shown to modulate Aβ aggregation, compounds with such activity combined with safety and high blood-brain barrier (BBB) permeability have yet to be reported. Brilliant Blue G (BBG) is a close structural analogue of a U.S. Food and Drug Administration (FDA)-approved food dye and has recently garnered prominent attention as a potential drug to treat spinal cord injury due to its neuroprotective effects along with BBB permeability and high degree of safety. In this work, we demonstrate that BBG is an effective Aβ aggregation modulator, which reduces Aβ-associated cytotoxicity in a dose-dependent manner by promoting the formation of off-pathway, nontoxic aggregates. Comparative studies of BBG and three structural analogues, Brilliant Blue R (BBR), Brilliant Blue FCF (BBF), and Fast Green FCF (FGF), revealed that BBG is most effective, BBR is moderately effective, and BBF and FGF are least effective in modulating Aβ aggregation and cytotoxicity. Therefore, the two additional methyl groups of BBG and other structural differences between the congeners are important in the interaction of BBG with Aβ leading to formation of nontoxic Aβ aggregates. Our findings support the hypothesis that generating nontoxic aggregates using small molecule modulators is an effective strategy for reducing Aβ cytotoxicity. Furthermore, key structural features of BBG identified through structure-function studies can open new avenues into therapeutic design for combating AD.


Biomacromolecules | 2013

Different Fates of Alzheimer’s Disease Amyloid-β Fibrils Remodeled by Biocompatible Small Molecules

Jacob A. Irwin; H. Edward Wong; Inchan Kwon

Amyloid fibrils implicated in numerous human diseases are thermodynamically very stable. Stringent conditions that would not be possible in a physiological environment are often required to disrupt the stable fibrils. Recently, there is increasing evidence that small molecules can remodel amyloid fibrils in a physiologically relevant manner. In order to investigate possible fibril remodeling mechanisms using this approach, we performed comparative studies on the structural features of the different amyloid-β (Aβ) aggregates remodeled from Aβ fibrils by three biocompatible small molecules: methylene blue; brilliant blue G; and erythrosine B. Combined with circular dichroism (CD), immuno-blotting, transmission electron microscopy (TEM), and atomic force microscopy (AFM) results, it was found that brilliant blue G- and erythrosine B-treatment generate fragmented Aβ fibrils and protofibrils, respectively. In contrast, incubation of the Aβ fibrils with methylene blue perturbs fibrillar structure, leading to amorphous Aβ aggregates. Our findings provide insights on the molecular mechanism of amyloid fibril formation and remodeling and also illustrate the possibility of controlled changes in biomolecule nanostructures.


Korean Journal of Chemical Engineering | 2012

Techniques for monitoring protein misfolding and aggregation in vitro and in living cells

Simpson Gregoire; Jacob A. Irwin; Inchan Kwon

Protein misfolding and aggregation have been considered important in understanding many neurodegenerative diseases and recombinant biopharmaceutical production. Various traditional and modern techniques have been utilized to monitor protein aggregation in vitro and in living cells. Fibril formation, morphology and secondary structure content of amyloidogenic proteins in vitro have been monitored by molecular probes, TEM/AFM, and CD/FTIR analyses, respectively. Protein aggregation in living cells has been qualitatively or quantitatively monitored by numerous molecular folding reporters based on either fluorescent protein or enzyme. Aggregation of a target protein is directly correlated to the changes in fluorescence or enzyme activity of the folding reporter fused to the target protein, which allows non-invasive monitoring aggregation of the target protein in living cells. Advances in the techniques used to monitor protein aggregation in vitro and in living cells have greatly facilitated the understanding of the molecular mechanism of amyloidogenic protein aggregation associated with neurodegenerative diseases, optimizing culture conditions to reduce aggregation of biopharmaceuticals expressed in living cells, and screening of small molecule libraries in the search for protein aggregation inhibitors.


Journal of Biological Chemistry | 2013

Targeting of heparanase-modified syndecan-1 by prosecretory mitogen lacritin requires conserved core GAGAL plus heparan and chondroitin sulfate as a novel hybrid binding site that enhances selectivity

Yinghui Zhang; Ningning Wang; Ronald W. Raab; Robert L. McKown; Jacob A. Irwin; Inchan Kwon; Toin H. van Kuppevelt; Gordon W. Laurie

Background: The C terminus of prosecretory mitogen lacritin targets the first 50 amino acids of syndecan-1 in a heparanase-dependent manner. Results: The amphipathic α-helix of lacritin ligates the sequence Gly-Ala-Gly-Ala-Leu and N-terminal chondroitin and heparan sulfate chains of SDC1. Conclusion: Ligation requires all three binding elements. Significance: This hybrid binding domain helps explain the remarkable cell selectivity of lacritin and may have relevance in dry eye. Cell surface heparan sulfate (HS) proteoglycans shape organogenesis and homeostasis by capture and release of morphogens through mechanisms largely thought to exclude the core protein domain. Nevertheless, heparanase deglycanation of the N-terminal HS-rich domain of syndecan-1 (SDC1), but not SDC2 or -4, is a prerequisite for binding of the prosecretory mitogen lacritin (Ma, P., Beck, S. L., Raab, R. W., McKown, R. L., Coffman, G. L., Utani, A., Chirico, W. J., Rapraeger, A. C., and Laurie, G. W. (2006) Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J. Cell Biol. 174, 1097–1106). We now report that the conserved and hydrophobic GAGAL domain in SDC1, adjacent to predicted HS substitution sites, is necessary to ligate and substantially enhance the α-helicity of the amphipathic C terminus of lacritin. Swapping out GAGAL for GADED in SDC2 or for GDLDD in SDC4 (both less hydrophobic) abrogated binding. HS and chondroitin sulfate are also essential. Both are detected in the N terminus, and when incubated with antibodies HS4C3 (anti-HS) or IO3H10 (anti-chondroitin sulfate), binding was absent, as occurred when all three N-terminal glycosaminoglycan substitution sites were mutated to alanine or when cells were treated with 4-methylumbelliferyl-β-d-xylopyranoside or chlorate to suppress glycosaminoglycan substitution or sulfation, respectively. SDC1 interacts with the hydrophobic face of lacritin via Leu-108/Leu-109/Phe-112 as well as with Glu-103/Lys-107 and Lys-111 of the largely cationic face. Carving a hybrid hydrophobic/electrostatic docking site out of SDC1 in a manner dependent on endogenous heparanase is a dynamic process appropriate for subtle or broad epithelial regulation in morphogenesis, health, and disease.


Biotechnology and Bioengineering | 2014

Cis‐suppression to arrest protein aggregation in mammalian cells

Simpson Gregoire; Shaojie Zhang; Joseph A. Costanzo; Kelly Wilson; Erik J. Fernandez; Inchan Kwon

Protein misfolding and aggregation are implicated in numerous human diseases and significantly lower production yield of proteins expressed in mammalian cells. Despite the importance of understanding and suppressing protein aggregation in mammalian cells, a protein design and selection strategy to modulate protein misfolding/aggregation in mammalian cells has not yet been reported. In this work, we address the particular challenge presented by mutation‐induced protein aggregation in mammalian cells. We hypothesize that an additional mutation(s) can be introduced in an aggregation‐prone protein variant, spatially near the original mutation, to suppress misfolding and aggregation (cis‐suppression). As a model protein, we chose human copper, zinc superoxide dismutase mutant (SOD1A4V) containing an alanine to valine mutation at residue 4, associated with the familial form of amyotrophic lateral sclerosis. We used the program RosettaDesign to identify Phe20 in SOD1A4V as a key residue responsible for SOD1A4V conformational destabilization. This information was used to rationally develop a pool of candidate mutations at the Phe20 site. After two rounds of mammalian‐cell based screening of the variants, three novel SOD1A4V variants with a significantly reduced aggregation propensity inside cells were selected. The enhanced stability and reduced aggregation propensity of the three novel SOD1A4V variants were verified using cell fractionation and in vitro stability assays. Biotechnol. Bioeng. 2014;111: 462–474.


PLOS ONE | 2013

Halogenation Generates Effective Modulators of Amyloid-Beta Aggregation and Neurotoxicity

H. Edward Wong; Jacob A. Irwin; Inchan Kwon

Halogenation of organic compounds plays diverse roles in biochemistry, including selective chemical modification of proteins and improved oral absorption/blood-brain barrier permeability of drug candidates. Moreover, halogenation of aromatic molecules greatly affects aromatic interaction-mediated self-assembly processes, including amyloid fibril formation. Perturbation of the aromatic interaction caused by halogenation of peptide building blocks is known to affect the morphology and other physical properties of the fibrillar structure. Consequently, in this article, we investigated the ability of halogenated ligands to modulate the self-assembly of amyloidogenic peptide/protein. As a model system, we chose amyloid-beta peptide (Aβ), which is implicated in Alzheimer’s disease, and a novel modulator of Aβ aggregation, erythrosine B (ERB). Considering that four halogen atoms are attached to the xanthene benzoate group in ERB, we hypothesized that halogenation of the xanthene benzoate plays a critical role in modulating Aβ aggregation and cytotoxicity. Therefore, we evaluated the modulating capacities of four ERB analogs containing different types and numbers of halogen atoms as well as fluorescein as a negative control. We found that fluorescein is not an effective modulator of Aβ aggregation and cytotoxicity. However, halogenation of either the xanthenes or benzoate ring of fluorescein substantially enhanced the inhibitory capacity on Aβ aggregation. Such Aβ aggregation inhibition by ERB analogs except rose bengal correlated well to the inhibition of Aβ cytotoxicity. To our knowledge, this is the first report demonstrating that halogenation of aromatic rings substantially enhance inhibitory capacities of small molecules on Aβ-associated neurotoxicity via Aβ aggregation modulation.


ChemMedChem | 2015

A Chemical Chaperone-Based Drug Candidate is Effective in a Mouse Model of Amyotrophic Lateral Sclerosis (ALS)

Tamar Getter; Ilana Zaks; Yael Barhum; Tali Ben-Zur; Sebastian Böselt; Simpson Gregoire; Olga Viskind; Tom Shani; Hugo E. Gottlieb; Omer Green; Moran Shubely; Hanoch Senderowitz; Adrian Israelson; Inchan Kwon; Susanne Petri; Daniel Offen; Arie Gruzman

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective death of motor neurons and skeletal muscle atrophy. The majority of ALS cases are acquired spontaneously, with inherited disease accounting for only 10 % of all cases. Recent studies provide compelling evidence that aggregates of misfolded proteins underlie both types of ALS. Small molecules such as artificial chaperones can prevent or even reverse the aggregation of proteins associated with various human diseases. However, their very high active concentration (micromolar range) severely limits their utility as drugs. We synthesized several ester and amide derivatives of chemical chaperones. The lead compound 14, 3‐((5‐((4,6‐dimethylpyridin‐2‐yl)methoxy)‐5‐oxopentanoyl)oxy)‐N,N‐dimethylpropan‐1‐amine oxide shows, in the micromolar concentration range, both neuronal and astrocyte protective effects in vitro; at daily doses of 10 mg kg−1 14 improved the neurological functions and delayed body weight loss in ALS mice. Members of this new chemical chaperone derivative class are strong candidates for the development of new drugs for ALS patients.


Biomacromolecules | 2016

Site-Specific Albumination as an Alternative to PEGylation for the Enhanced Serum Half-Life in Vivo

Byungseop Yang; Sung In Lim; Jong Chul Kim; Inchan Kwon

Polyethylene glycol (PEG) has been widely used as a serum half-life extender of therapeutic proteins. However, due to immune responses and low degradability of PEG, developing serum half-life extender alternatives to PEG is required. Human serum albumin (HSA) has several beneficial features as a serum half-life extender, including a very long serum half-life, good degradability, and low immune responses. In order to further evaluate the efficacy of HSA, we compared the extent of serum half-life extension of a target protein, superfolder green fluorescent protein (sfGFP), upon HSA conjugation with PEG conjugation side-by-side. Combination of site-specific incorporation of p-azido-l-phenylalanine into sfGFP and copper-free click chemistry achieved the site-specific conjugation of a single HSA, 20 kDa PEG, or 30 kDa PEG to sfGFP. These sfGFP conjugates exhibited the fluorescence comparable to or even greater than that of wild-type sfGFP (sfGFP-WT). In mice, HSA-conjugation to sfGFP extended the serum half-life 9.0 times compared to that of unmodified sfGFP, which is comparable to those of PEG-conjugated sfGFPs (7.3 times for 20 kDa PEG and 9.5 times for 30 kDa PEG). These results clearly demonstrated that HSA was as effective as PEG in extending the serum half-life of a target protein. Therefore, with the additional favorable features, HSA is a good serum half-life extender of a (therapeutic) protein as an alternative to PEG.


Scientific Reports | 2016

Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex

Sung In Lim; Byungseop Yang; Younghan Jung; Jaehyun Cha; Jinhwan Cho; Eun-Sil Choi; Yong Hwan Kim; Inchan Kwon

Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other.


Biotechnology Journal | 2012

A revisited folding reporter for quantitative assay of protein misfolding and aggregation in mammalian cells

Simpson Gregoire; Inchan Kwon

Protein misfolding and aggregation play important roles in many physiological processes. These include pathological protein aggregation in neurodegenerative diseases and biopharmaceutical protein aggregation during production in mammalian cells. To develop a simple non-invasive assay for protein misfolding and aggregation in mammalian cells, the folding reporter green fluorescent protein (GFP) system, originally developed for bacterial cells, was evaluated. As a folding reporter, GFP was fused to the C-terminus of a panel of human copper/zinc superoxide dismutase (SOD1) mutants with varying misfolding/aggregation propensities. Flow cytometric analysis of transfected HEK293T and NSC-34 cells revealed that the mean fluorescence intensities of the cells expressing GFP fusion of SOD1 variants exhibited an inverse correlation with the misfolding/aggregation propensities of the four SOD1 variants. Our results support the hypothesis that the extent of misfolding/aggregation of a target protein in mammalian cells can be quantitatively estimated by measuring the mean fluorescence intensity of the cells expressing GFP fusion. The assay method developed herein will facilitate the understanding of aggregation process of SOD1 variants and the identification of aggregation inhibitors. The method also has great promise for misfolding/aggregation studies of other proteins in mammalian cells.

Collaboration


Dive into the Inchan Kwon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung In Lim

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byungseop Yang

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Eun Sil Choi

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Geun-Joong Kim

Chonnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge