Indar W. Ramnarine
University of the West Indies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Indar W. Ramnarine.
Behavioral Ecology and Sociobiology | 2009
Darren P. Croft; Jens Krause; Safi K. Darden; Indar W. Ramnarine; Jolyon J. Faria; Richard James
The social fine structure of a population plays a central role in ecological and evolutionary processes. Whilst many studies have investigated how morphological traits such as size affect social structure of populations, comparatively little is known about the influence of behaviours such as boldness and shyness. Using information on social interactions in a wild population of Trinidadian guppies (Poecilia reticulata), we construct a social network. For each individual in the network, we quantify its behavioural phenotype using two measures of boldness, predator inspection tendency, a repeatable and reliably measured behaviour well studied in the context of co-operation, and shoaling tendency. We observe striking heterogeneity in contact patterns, with strong ties being positively assorted and weak ties negatively assorted by our measured behavioural traits. Moreover, shy fish had more network connections than bold fish and these were on average stronger. In other words, social fine structure is strongly influenced by behavioural trait. We assert that such structure will have implications for the outcome of selection on behavioural traits and we speculate that the observed positive assortment may act as an amplifier of selection contributing to the maintenance of co-operation during predator inspection.
Evolution | 2006
Cock van Oosterhout; Domino A. Joyce; Stephen M. Cummings; Jonatan Blais; Nicola J. Barson; Indar W. Ramnarine; Ryan S. Mohammed; Nadia Persad; Joanne Cable
Abstract Our understanding of the evolution of genes of the major histocompatibility complex (MHC) is rapidly increasing, but there are still enigmatic questions remaining, particularly regarding the maintenance of high levels of MHC polymorphisms in small, isolated populations. Here, we analyze the genetic variation at eight microsatellite loci and sequence variation at exon 2 of the MHC class IIB (DAB) genes in two wild populations of the Trinidadian guppy, Poecilia reticulata. We compare the genetic variation of a small (Ne∼ 100) and relatively isolated upland population to that of its much larger (Ne∼ 2400) downstream counterpart. As predicted, microsatellite diversity in the upland population is significantly lower and highly differentiated from the population further downstream. Surprisingly, however, these guppy populations are not differentiated by MHC genetic variation and show very similar levels of allelic richness. Computer simulations indicate that the observed level of genetic variation can be maintained with overdominant selection acting at three DAB loci. The selection coefficients differ dramatically between the upland (s 0.2) and lowland (s≤ 0.01) populations. Parasitological analysis on wild‐caught fish shows that parasite load is significantly higher on upland than on lowland fish, which suggests that large differences in selection intensity may indeed exist between populations. Based on the infection intensity, a substantial proportion of the upland fish would have suffered direct or indirect fitness consequences as a result of their high parasite loads. Selection by parasites plays a particularly important role in the evolution of guppies in the upland habitat, which has resulted in high levels of MHC diversity being maintained in this population despite considerable genetic drift.
Proceedings of the Royal Society B: Biological Sciences | 2013
Grant E. Brown; Maud C. O. Ferrari; Chris K. Elvidge; Indar W. Ramnarine; Douglas P. Chivers
Prey species possess a variety of morphological, life history and behavioural adaptations to evade predators. While specific evolutionary conditions have led to the expression of permanent, non-plastic anti-predator traits, the vast majority of prey species rely on experience to express adaptive anti-predator defences. While ecologists have identified highly sophisticated means through which naive prey can deal with predation threats, the potential for death upon the first encounter with a predator is still a remarkably important unresolved issue. Here, we used both laboratory and field studies to provide the first evidence for risk-induced neophobia in two taxa (fish and amphibians), and argue that phenotypically plastic neophobia acts as an adaptive anti-predator strategy for vulnerable prey dealing with spatial and temporal variation in predation risk. Our study also illustrates how risk-free maintenance conditions used in laboratory studies may blind researchers to adaptive anti-predator strategies that are only expressed in high-risk conditions.
Molecular Ecology | 2008
Bryan D. Neff; Trevor E. Pitcher; Indar W. Ramnarine
We use microsatellite loci to detail the multiple paternity patterns in broods from 10 wild populations of the guppy (Poecilia reticulata) found in Northern Trinidad. The populations span two major drainages comprising the Caroni and the Oropouche, and include sites that are characterized by either high or low predation. Across the populations the frequency of multiple paternity is high with 95% (range: 70%–100%) of broods having multiple sires. Broods have an average of 3.5 sires (range: 1–9) and a mixed‐model analysis suggests that broods from high predation sites have marginally more sires than do those from low predation sites, but this is true only in the Oropouche drainage. There is no difference in sire number between predation sites in the Caroni drainage. Brood size, but not female body length, is correlated with the number of sires and the correlation cannot be attributed solely to the stochastic process associated with sperm competition and a ‘fair raffle’. Within broods there is significant skew in reproductive success among males, which may reflect variation in sperm competitiveness or female choice. There is, however, no difference in the skew among populations from different predation regimes or drainages. Finally, high predation populations were characterized by increased genetic variability at the microsatellite loci, suggesting a larger effective population size. We discuss explanations for the high degree of multiple paternity but the general lack of any major differences among broods from ecologically different populations.
Animal Behaviour | 2004
Anne E. Magurran; Indar W. Ramnarine
Research on learned species discrimination has focused on the consequences of early experience. However, in species where parental care is limited or absent, including most fish, juveniles have fewer opportunities to learn from adult conspecifics. We examined male mate recognition in Trinidadian guppies, Poecilia reticulata, and in their sister species, the swamp guppy, P. picta. Choice tests revealed that males from localities where their species is the only poeciliid present initially mated with conspecific and heterospecific females at random. In contrast, P. reticulata and P. picta found in sympatry preferred their own females. We then investigated the acquisition of mating discrimination by wild P. reticulata males from two allopatric populations. Males that were allowed to interact with females of both species learned within 4 days to distinguish conspecific partners, and within a week their species discrimination matched that of sympatric populations. This study confirms that learning is important in the acquisition of adult mating preferences and shows why learned mate preferences can be important in the last stages of speciation.
Behavioral Ecology and Sociobiology | 2004
Lars Pettersson; Indar W. Ramnarine; S. Anette Becher; Rajindra Mahabir; Anne E. Magurran
In many species, population sex ratios have far-reaching consequences for a wide variety of population-level and behavioural processes and can directly influence sexual selection through differential effects on male and female mating behaviour. Although sex ratios are often treated as more or less stable population characteristics, recent theoretical evidence suggests that sex ratios fluctuate under many conditions, and that the amplitude of these fluctuations can be considerable. Few studies have attempted to quantify this variation in systems with prominent, sex ratio-dependent sexual conflict. One of the species with the greatest potential to integrate these factors in the wild is the Trinidadian guppy, Poecilia reticulata. In this study, we quantified natural sex ratio variation both as detailed longitudinal studies of focal guppy populations and as snapshot estimates across a range of freshwater habitats. In line with theoretical predictions, we expected to detect significant sex ratio variation over time. We also investigated the association between juvenile and adult sex ratios to quantify a possible compensatory feedback implied in standard models of sex ratio evolution. Our results confirm that population-level sex ratios in wild guppy populations have a range of dynamic features, with all four focal populations showing significant variation in sex ratio over time. The survey showed that juveniles were generally close to equal (50:50) sex ratios whereas 7 out of 11 adult sex ratios differed significantly from equality. We found no evidence that a surplus of juveniles of the locally rarer sex had been produced. The results indicate that sex ratios and hence the balance between sexual selection and sexual coercion is normally fluctuating in nature, despite juvenile ratios being close to equality.
Frontiers in Ecology and the Environment | 2013
Serinde J van Wijk; Martin I. Taylor; Simon Creer; Christine Dreyer; Fernanda M Rodrigues; Indar W. Ramnarine; Cock van Oosterhout; Gary R. Carvalho
Size-selective harvesting in commercial fisheries can induce rapid changes in biological traits. While experimental and wild harvested populations often exhibit clear shifts in body size and maturation associated with fishing pressure, the relative contributions of genetic and environmental factors to these shifts remain uncertain and have been much debated. To date, observations of so-called fisheries-induced evolution (FIE) have been based solely on phenotypic measures, such as size data. Genetic data are hitherto lacking. Here, we quantify genetic versus environmental change in response to size-selective harvesting for small and large body size in guppies (Poecilia reticulata) across three generations of selection. We document for the first time significant changes at individual genetic loci, some of which have previously been associated with body size. In contrast, variation at neutral microsatellite markers was unaffected by selection, providing direct genetic evidence for rapid evolution induced by ...
Animal Behaviour | 2003
Jennifer L. Kelley; Jonathan P. Evans; Indar W. Ramnarine; Anne E. Magurran
Abstract The ability to recognize and respond to predators often has a learned component, but few studies have examined the role of social learning in the development of antipredator behaviour. We investigated whether wild-caught juvenile guppies, Poecilia reticulata , from a low-predation river in Trinidad increase their response towards a novel predator through association with conspecifics from a high-predation river. We assigned fish to one of three treatment groups: (1) repeated exposure to a model accompanied by high-predation conspecifics; (2) repeated exposure to a model with low-predation conspecifics; (3) a control group in which focal fish interacted with high-predation fish in the absence of the model. Guppies trained with high-predation, but not low-predation, ‘demonstrators’ significantly improved their antipredator behaviour (spent more time schooling and inspected the model from further away). The guppies assigned to the control group showed no significant improvement in antipredator behaviour after the training period, suggesting that association with experienced conspecifics in the absence of the model is not sufficient to enhance the antipredator behaviour of naive fish. We conclude that guppies can improve their antipredator behaviour through association with more experienced conspecifics in the presence of visual cues simulating high predation risk. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.
Proceedings of the Royal Society of London B: Biological Sciences | 2011
Jonathan P. Evans; Clelia Gasparini; Indar W. Ramnarine; Trevor E. Pitcher; Andrea Pilastro
The role of sexual selection in fuelling genital evolution is becoming increasingly apparent from comparative studies revealing interspecific divergence in male genitalia and evolutionary associations between male and female genital traits. Despite this, we know little about intraspecific variance in male genital morphology, or how male and female reproductive traits covary among divergent populations. Here we address both topics using natural populations of the guppy, Poecilia reticulata, a livebearing fish that exhibits divergent patterns of male sexual behaviour among populations. Initially, we performed a series of mating trials on a single population to examine the relationship between the morphology of the males copulatory organ (the gonopodium) and the success of forced matings. Using a combination of linear measurements and geometric morphometrics, we found that variation in the length and shape of the gonopodium predicted the success of forced matings in terms of the rate of genital contacts and insemination success, respectively. We then looked for geographical divergence in these traits, since the relative frequency of forced matings tends to be greater in high-predation populations. We found consistent patterns of variation in male genital size and shape in relation to the level of predation, and corresponding patterns of (co)variation in female genital morphology. Together, these data enable us to draw tentative conclusions about the underlying selective pressures causing correlated patterns of divergence in male and female genital traits, which point to a role for sexually antagonistic selection.
Behavioral Ecology and Sociobiology | 2009
Grant E. Brown; Camille J.MacnaughtonC.J. Macnaughton; Chris K. Elvidge; Indar W. Ramnarine; Jean-Guy J. Godin
The antipredator behaviour of prey organisms is shaped by a series of threat-sensitive trade-offs between the benefits associated with successful predator avoidance and a suite of other fitness-related behaviours such as foraging, mating and territorial defence. Recent research has shown that the overall intensity of antipredator response and the pattern of threat-sensitive trade-offs are influenced by current conditions, including variability in predation risk over a period of days to weeks. In this study, we tested the hypothesis that long-term predation pressure will likewise have shaped the nature of the threat-sensitive antipredator behaviour of wild-caught Trinidadian guppies (Poecilia reticulata). Female guppies were collected from two populations that have evolved under high- and low-predation pressure, respectively, in the Aripo River, Northern Mountain Range, Trinidad. Under laboratory conditions, we exposed shoals of three guppies to varying concentrations of conspecific damage-released chemical alarm cues. Lower Aripo (high-predation) guppies exhibited the strongest antipredator response when exposed to the highest alarm cue concentration and a graded decline in response intensity with decreasing concentrations of alarm cue. Upper Aripo (low-predation) guppies, however, exhibited a nongraded (hypersensitive) response pattern. Our results suggest that long-term predation pressure shapes not only the overall intensity of antipredator responses of Trinidadian guppies but also their threat-sensitive behavioural response patterns.