Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Indira Prasadam is active.

Publication


Featured researches published by Indira Prasadam.


Nature Communications | 2013

An influenza virus-inspired polymer system for the timed release of siRNA

Nghia P. Truong; Wenyi Gu; Indira Prasadam; Zhongfan Jia; Ross Crawford; Yin Xiao; Michael J. Monteiro

Small interfering RNA silences specific genes by interfering with mRNA translation, and acts to modulate or inhibit specific biological pathways; a therapy that holds great promise in the cure of many diseases. However, the naked small interfering RNA is susceptible to degradation by plasma and tissue nucleases and due to its negative charge unable to cross the cell membrane. Here we report a new polymer carrier designed to mimic the influenza virus escape mechanism from the endosome, followed by a timed release of the small interfering RNA in the cytosol through a self-catalyzed polymer degradation process. Our polymer changes to a negatively charged and non-toxic polymer after the release of small interfering RNA, presenting potential for multiple repeat doses and long-term treatment of diseases.


Arthritis & Rheumatism | 2010

ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblasts

Indira Prasadam; Stijn van Gennip; Thor Friis; Wei Shi; Ross Crawford; Yin Xiao

OBJECTIVE Previous studies have shown the influence of subchondral bone osteoblasts (SBOs) on phenotypical changes of articular cartilage chondrocytes (ACCs) during the development of osteoarthritis (OA). The molecular mechanisms involved during this process remain elusive, in particular, the signal transduction pathways. The aim of this study was to investigate the in vitro effects of OA SBOs on the phenotypical changes in normal ACCs and to unveil the potential involvement of MAPK signaling pathways during this process. METHODS Normal and arthritic cartilage and bone samples were collected for isolation of ACCs and SBOs. Direct and indirect coculture models were applied to study chondrocyte hypertrophy under the influence of OA SBOs. MAPKs in the regulation of the cell-cell interactions were monitored by phosphorylated antibodies and relevant inhibitors. RESULTS OA SBOs led to increased hypertrophic gene expression and matrix calcification in ACCs by means of both direct and indirect cell-cell interactions. In this study, we demonstrated for the first time that OA SBOs suppressed p38 phosphorylation and induced ERK-1/2 signal phosphorylation in cocultured ACCs. The ERK-1/2 pathway inhibitor PD98059 significantly attenuated the hypertrophic changes induced by conditioned medium from OA SBOs, and the p38 inhibitor SB203580 resulted in the up-regulation of hypertrophic genes in ACCs. CONCLUSION The findings of this study suggest that the pathologic interaction of OA SBOs and ACCs is mediated via the activation of ERK-1/2 phosphorylation and deactivation of p38 phosphorylation, resulting in hypertrophic differentiation of ACCs.


Bone | 2010

Osteoarthritic cartilage chondrocytes alter subchondral bone osteoblast differentiation via MAPK signalling pathway involving ERK1/2

Indira Prasadam; Thor Friis; Wei Shi; Stijn van Gennip; Ross Crawford; Yin Xiao

Osteoarthritic subchondral bone is characterized by abnormal bone density and enhanced production of bone turnover markers, an indication of osteoblast dysfunction. Several studies have proposed that pathological changes in articular cartilage influence the subchondral bone changes, which are typical of the progression of osteoarthritis; however, direct evidence of this has yet to be reported. The aim of the present study was to investigate what effects articular cartilage cells, isolated from normal and osteoarthritic joints, may have on the subchondral bone osteoblast phenotype, and also the potential involvement of the mitogen activated protein kinase (MAPK) signalling pathway during this process. Our results suggest that chondrocytes isolated from a normal joint inhibited osteoblast differentiation, whereas chondrocytes isolated from an osteoarthritic joint enhanced osteoblast differentiation, both via a direct and indirect cell interaction mechanisms. Furthermore, the interaction of subchondral bone osteoblasts with osteoarthritic chondrocyte conditioned media appeared to significantly activate ERK1/2 phosphorylation. On the other hand, conditioned media from normal articular chondrocytes did not affect ERK1/2 phosphorylation. Inhibition of the MAPK-ERK1/2 pathways reversed the phenotype changes of subchondral bone osteoblast, which would otherwise be induced by the conditioned media from osteoarthritic chondrocytes. In conclusion, our findings provide evidence that osteoarthritic chondrocytes affect subchondral bone osteoblast metabolism via an ERK1/2 dependent pathway.


Osteoporosis International | 2014

A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects

Lingfei Wei; Jin Ke; Indira Prasadam; Richard J. Miron; Shirao Lin; Yin Xiao; Jiang Chang; Chengtie Wu; Yufeng Zhang

SummaryRecently, the use of the pharmacological agent strontium ranelate has come to prominence for the treatment of osteoporosis. While much investigation is focused on preventing disease progression, here we fabricate strontium-containing scaffolds and show that they enhance bone defect healing in the femurs of rats induced by ovariectomy.IntroductionRecently, the use of the pharmacological agent strontium ranelate has come to prominence for the treatment of osteoporosis due to its ability to prevent bone loss in osteoporotic patients. Although much emphasis has been placed on using pharmacological agents for the prevention of disease, much less attention has been placed on the construction of biomaterials following osteoporotic-related fracture. The aim of the present study was to incorporate bioactive strontium (Sr) trace element into mesoporous bioactive glass (MBG) scaffolds and to investigate their in vivo efficacy for bone defect healing in the femurs of rats induced by ovariectomy.MethodsIn total, 30 animals were divided into five groups as follows: (1) empty defect (control), (2) empty defects with estrogen replacement therapy, (3) defects filled with MBG scaffolds alone, (4) defects filled with MBG + estrogen replacement therapy, and (5) defects filled with strontium-incorporated mesopore-bioglass (Sr-MBG) scaffolds.ResultsThe two groups demonstrating the highest levels of new bone formation were the defects treated with MBG + estrogen replacement therapy and the defects receiving Sr-MBG scaffolds as assessed by μ-CT and histological analysis. Furthermore, Sr scaffolds had a reduced number of tartrate-resistant acid phosphatase-positive cells when compared to other modalities.ConclusionThe results from the present study demonstrate that the local release of Sr from bone scaffolds may improve fracture repair. Future large animal models are necessary to investigate the future relationship of Sr incorporation into biomaterials.


Biomacromolecules | 2013

Polymer nanocarrier system for endosome escape and timed release of siRNA with complete gene silencing and cell death in cancer cells.

Wenyi Gu; Zhongfan Jia; Nghia P. Truong; Indira Prasadam; Yin Xiao; Michael J. Monteiro

An influenza virus-inspired polymer mimic nanocarrier was used to deliver siRNA for specific and near complete gene knockdown of an osteoscarcom cell line (U-2SO). The polymer was synthesized by single-electron transfer living radical polymerization (SET-LRP) at room temperature to avoid complexities of transfer to monomer or polymer. It was the only LRP method that allowed good block copolymer formation with a narrow molecular weight distribution. At nitrogen to phosphorus (N/P) ratios of equal to or greater than 20 (greater than a polymer concentration of 13.8 μg/mL) with polo-like kinase 1 (PLK1) siRNA gave specific and near complete (>98%) cell death. The polymer further degrades to a benign polymer that showed no toxicity even at polymer concentrations of 200 μg/mL (or N/P ratio of 300), suggesting that our polymer nanocarrier can be used as a very effective siRNA delivery system and in a multiple dose administration. This work demonstrates that with a well-designed delivery device, siRNA can specifically kill cells without the inclusion of an additional clinically used highly toxic cochemotherapeutic agent. Our work also showed that this excellent delivery is sensitive for the study of off-target knockdown of siRNA.


The Journal of Rheumatology | 2012

Aggravation of ADAMTS and matrix metalloproteinase production and role of ERK1/2 pathway in the interaction of osteoarthritic subchondral bone osteoblasts and articular cartilage chondrocytes -- possible pathogenic role in osteoarthritis.

Indira Prasadam; Ross Crawford; Yin Xiao

Objective. Degradative enzymes, such as A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and matrix metalloproteinases (MMP), play key roles in development of osteoarthritis (OA). We investigated if crosstalk between subchondral bone osteoblasts (SBO) and articular cartilage chondrocytes (ACC) in OA alters the expression and regulation of ADAMTS5, ADAMTS4, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, and MMP-13, and also tested the possible involvement of mitogen-activated protein kinase (MAPK) signaling pathway during this process. Methods. ACC and SBO were isolated from normal and OA patients. An in vitro coculture model was developed to study the regulation of ADAMTS and MMP under normal and OA joint crosstalk conditions. The MAPK-ERK inhibitor PD98059 was applied to delineate the involvement of specific pathways during this interaction process. Results. Indirect coculture of OA SBO with normal ACC resulted in significantly increased expression of ADAMTS5, ADAMTS4, MMP-2, MMP-3, and MMP-9 in ACC, whereas coculture of OA ACC led to increased MMP-1 and MMP-2 expression in normal SBO. Upregulation of ADAMTS and MMP under these conditions was correlated with activation of the MAPK-ERK1/2 signaling pathway, and addition of the MAPK-ERK inhibitor PD98059 reversed the overexpression of ADAMTS and MMP in cocultures. Conclusion. These results add to the evidence that in human OA, altered bidirectional signals between SBO and ACC significantly influence the critical features of both cartilage and bone by producing abnormal levels of ADAMTS and MMP. We have demonstrated for the first time that this altered crosstalk was mediated by the phosphorylation of MAPK-ERK1/2 signaling pathway.


Acta Biomaterialia | 2012

The microRNA expression signature on modified titanium implant surfaces influences genetic mechanisms leading to osteogenic differentiation.

Nishant Chakravorty; Saso Ivanovski; Indira Prasadam; Ross Crawford; Adekunle Oloyede; Yin Xiao

Topographically and chemically modified titanium implants are recognized to have improved osteogenic properties; however, the molecular regulation of this process remains unknown. This study aimed to determine the microRNA profile and the potential regulation of osteogenic differentiation following early exposure of osteoprogenitor cells to sand-blasted, large-grit acid-etched (SLA) and hydrophilic SLA (modSLA) surfaces. Firstly, the osteogenic characteristics of the primary osteoprogenitor cells were confirmed using ALP activity and Alizarin Red S staining. The effect of smooth (SMO), SLA and modSLA surfaces on the TGF-β/BMP (BMP2, BMP6, ACVR1) and non-canonical WNT/Ca(2+) (WNT5A, FZD6) pathways, as well as the integrins ITGB1 and ITGA2, was determined. It was revealed that the modified titanium surfaces could induce the activation of TGF-β/BMP and non-canonical WNT/Ca(2+) signaling genes. The expression pattern of microRNAs (miRNAs) related to cell differentiation was evaluated. Statistical analysis of the differentially regulated miRNAs indicated that 35 and 32 miRNAs were down-regulated on the modSLA and SLA surfaces respectively, when compared with the smooth surface (SMO). Thirty-one miRNAs that were down-regulated were common to both modSLA and SLA. There were 10 miRNAs up-regulated on modSLA and nine on SLA surfaces, amongst which eight were the same as observed on modSLA. TargetScan predictions for the down-regulated miRNAs revealed genes of the TGF-β/BMP and non-canonical Ca(2+) pathways as targets. This study demonstrated that modified titanium implant surfaces induce differential regulation of miRNAs, which potentially regulate the TGF-β/BMP and WNT/Ca(2+) pathways during osteogenic differentiation on modified titanium implant surfaces.


International Journal of Biological Sciences | 2012

Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis.

Anjali Jaiprakash; Indira Prasadam; Jian Q. Feng; Ying Liu; Ross Crawford; Yin Xiao

Subchondral bone sclerosis is a well-recognised manifestation of osteoarthritis (OA). The osteocyte cell network is now considered to be central to the regulation of bone homeostasis; however, it is not known whether the integrity of the osteocyte cell network is altered in OA patients. The aim of this study was to investigate OA osteocyte phenotypic changes and its potential role in OA subchondral bone pathogenesis. The morphological and phenotypic changes of osteocytes in OA samples were investigated by micro-CT, SEM, histology, immunohistochemistry, TRAP staining, apoptosis assay and real-time PCR studies. We demonstrated that in OA subchondral bone, the osteocyte morphology was altered showing rough and rounded cell body with fewer and disorganized dendrites compared with the osteocytes in control samples. OA osteocyte also showed dysregulated expression of osteocyte markers, apoptosis, and degradative enzymes, indicating that the phenotypical changes in OA osteocytes were accompanied with OA subchondral bone remodelling (increased osteoblast and osteoclast activity) and increased bone volume with altered mineral content. Significant alteration of osteocytes identified in OA samples indicates a potential regulatory role of osteocytes in subchondral bone remodelling and mineral metabolism during OA pathogenesis.


Rheumatology | 2012

Inhibition of p38 pathway leads to OA-like changes in a rat animal model

Indira Prasadam; Xinzhan Mao; Yanping Wang; Wei Shi; Ross Crawford; Yin Xiao

OBJECTIVES The p38 mitogen-activated protein kinase (MAPK) signal transduction pathway is involved in a variety of inflammatory responses, including cytokine generation, cell differentiation proliferation and apoptosis. Here, we examined the effects of systemic p38 MAPK inhibition on cartilage cells and OA disease progression by both in vitro and in vivo approaches. METHODS p38 kinase activity was evaluated in normal and OA cartilage cells by measuring the amount of phosphorylated protein. To examine the function of p38 signalling pathway in vitro, normal chondrocytes were isolated and differentiated in the presence or absence of p38 inhibitor SB203580 and analysed for chondrogenic phenotype. Effect of systemic p38 MAPK inhibition in normal and OA (induced by menisectomy) rats were analysed by treating animals with vehicle alone [dimethylsulphoxide (DMSO)] or p38 inhibitor (SB203580). Damage to the femur and tibial plateau was evaluated by modified Mankin score, histology and immunohistochemistry. RESULTS Our in vitro studies have revealed that a down-regulation of chondrogenic and an increase of hypertrophic gene expression occurs in the normal chondrocytes when p38 is neutralized by a pharmacological inhibitor. We further observed that the basal levels of p38 phosphorylation were decreased in OA chondrocytes compared with normal chondrocytes. These findings together indicate the importance of this pathway in the regulation of cartilage physiology and its relevance to OA pathogenesis. At the in vivo level, systematic administration of a specific p38 MAPK inhibitor, SB203580, continuously for more than a month led to a significant loss of proteoglycan, aggrecan and cartilage thickness. On the other hand, SB203580-treated normal rats showed a significant increase in Terminal dUTP nick end-labelling (TUNEL)-positive cells, cartilage hypertrophy markers such as Type 10 collagen, Runt-related transcription factor and MMP-13 and substantially induced OA-like phenotypic changes in the normal rats. In addition, menisectomy-induced OA rat models that were treated with p38 inhibitor showed aggravation of cartilage damage. CONCLUSIONS In summary, this study has provided evidence that the component of the p38 MAPK pathway is important to maintain cartilage health, and its inhibition can lead to severe cartilage degenerative changes. The observations in this study highlight the possibility of using activators of the p38 pathway as an alternative approach in the treatment of OA.


Journal of Molecular Medicine | 2013

Combination of MEK-ERK inhibitor and hyaluronic acid has a synergistic effect on anti-hypertrophic and pro-chondrogenic activities in osteoarthritis treatment

Indira Prasadam; Xinzhan Mao; Wei Shi; Ross Crawford; Yin Xiao

We hypothesised that a potentially disease-modifying osteoarthritis (OA) drug such as hyaluronic acid (HA) given in combination with anti-inflammatory signalling agents such as mitogen-activated protein kinase kinase–extracellular signal-regulated kinase (MEK-ERK) signalling inhibitor (U0126) could result in additive or synergistic effects on preventing the degeneration of articular cartilage. Chondrocyte differentiation and hypertrophy were evaluated using human OA primary cells treated with either HA or U0126, or the combination of HA + U0126. Cartilage degeneration in menisectomy (MSX) induced rat OA model was investigated by intra-articular delivery of either HA or U0126, or the combination of HA + U0126. Histology, immunostaining, RT-qPCR, Western blotting and zymography were performed to assess the expression of cartilage matrix proteins and hypertrophic markers. Phosphorylated ERK (pERK)1/2-positive chondrocytes were significantly higher in OA samples compared with those in healthy control suggesting the pathological role of that pathway in OA. It was noted that HA + U0126 significantly reduced the levels of pERK, chondrocyte hypertrophic markers (COL10 and RUNX2) and degenerative markers (ADAMTs5 and MMP-13), however, increased the levels of chondrogenic markers (COL2) compared to untreated or the application of HA or U0126 alone. In agreement with the results in vitro, intra-articular delivery of HA + U0126 showed significant therapeutic improvement of cartilage in rat MSX OA model compared with untreated or the application of HA or U0126 alone. Our study suggests that the combination of HA and MEK-ERK inhibition has a synergistic effect on preventing cartilage degeneration.

Collaboration


Dive into the Indira Prasadam's collaboration.

Top Co-Authors

Avatar

Yin Xiao

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ross Crawford

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thor Friis

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Adekunle Oloyede

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Wenyi Gu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Wei Shi

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Sunderajhan Sekar

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Isaac O. Afara

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Xinzhan Mao

Central South University

View shared research outputs
Top Co-Authors

Avatar

Yinghong Zhou

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge