Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Indira T. Kudva is active.

Publication


Featured researches published by Indira T. Kudva.


Applied and Environmental Microbiology | 2002

Gastrointestinal tract location of Escherichia coli O157:H7 in ruminants.

Luke J. Grauke; Indira T. Kudva; Jang Won Yoon; Carl W. Hunt; Christopher J. Williams; Carolyn J. Hovde

ABSTRACT Experimentally inoculated sheep and cattle were used as models of natural ruminant infection to investigate the pattern of Escherichia coli O157:H7 shedding and gastrointestinal tract (GIT) location. Eighteen forage-fed cattle were orally inoculated with E. coli O157:H7, and fecal samples were cultured for the bacteria. Three distinct patterns of shedding were observed: 1 month, 1 week, and 2 months or more. Similar patterns were confirmed among 29 forage-fed sheep and four cannulated steers. To identify the GIT location of E. coli O157:H7, sheep were sacrificed at weekly intervals postinoculation and tissue and digesta cultures were taken from the rumen, abomasum, duodenum, lower ileum, cecum, ascending colon, descending colon, and rectum. E. coli O157:H7 was most prevalent in the lower GIT digesta, specifically the cecum, colon, and feces. The bacteria were only inconsistently cultured from tissue samples and only during the first week postinoculation. These results were supported in studies of four Angus steers with cannulae inserted into both the rumen and duodenum. After the steers were inoculated, ruminal, duodenal, and fecal samples were cultured periodically over the course of the infection. The predominant location of E. coli O157:H7 persistence was the lower GIT. E. coli O157:H7 was rarely cultured from the rumen or duodenum after the first week postinoculation, and this did not predict if animals went on to shed the bacteria for 1 week or 1 month. These findings suggest the colon as the site for E. coli O157:H7 persistence and proliferation in mature ruminant animals.


Applied and Environmental Microbiology | 2006

Application of Bacteriophages To Control Intestinal Escherichia coli O157:H7 Levels in Ruminants

Haiqing Sheng; Hannah J. Knecht; Indira T. Kudva; Carolyn J. Hovde

ABSTRACT A previously characterized O157-specific lytic bacteriophage KH1 and a newly isolated phage designated SH1 were tested, alone or in combination, for reducing intestinal Escherichia coli O157:H7 in animals. Oral treatment with phage KH1 did not reduce the intestinal E. coli O157:H7 in sheep. Phage SH1 formed clear and relatively larger plaques on lawns of all 12 E. coli O157:H7 isolates tested and had a broader host range than phage KH1, lysing O55:H6 and 18 of 120 non-O157 E. coli isolates tested. In vitro, mucin or bovine mucus did not inhibit bacterial lysis by phage SH1 or KH1. A phage treatment protocol was optimized using a mouse model of E. coli O157:H7 intestinal carriage. Oral treatment with SH1 or a mixture of SH1 and KH1 at phage/bacterium ratios ≥102 terminated the presence of fecal E. coli O157:H7 within 2 to 6 days after phage treatment. Untreated control mice remained culture positive for >10 days. To optimize bacterial carriage and phage delivery in cattle, E. coli O157:H7 was applied rectally to Holstein steers 7 days before the administration of 1010 PFU SH1 and KH1. Phages were applied directly to the rectoanal junction mucosa at phage/bacterium ratios calculated to be ≥102. In addition, phages were maintained at 106 PFU/ml in the drinking water of the phage treatment group. This phage therapy reduced the average number of E. coli O157:H7 CFU among phage-treated steers compared to control steers (P < 0.05); however, it did not eliminate the bacteria from the majority of steers.


Journal of Bacteriology | 2002

Strains of Escherichia coli O157:H7 Differ Primarily by Insertions or Deletions, Not Single-Nucleotide Polymorphisms

Indira T. Kudva; Peter S. Evans; Nicole T. Perna; Timothy J. Barrett; Frederick M. Ausubel; Frederick R. Blattner; Stephen B. Calderwood

Escherichia coli O157:H7 (O157) strains demonstrate varied pulsed-field gel electrophoresis patterns following XbaI digestion, which enable epidemiological surveillance of this important human pathogen. The genetic events underlying PFGE differences between strains, however, are not defined. We investigated the mechanisms for strain variation in O157 by recovering and examining nucleotide sequences flanking each of the XbaI restriction enzyme sites in the genome. Our analysis demonstrated that differences between O157 strains were due to discrete insertions or deletions that contained the XbaI sites polymorphic between strains rather than single-nucleotide polymorphisms in the XbaI sites themselves. These insertions and deletions were found to be uniquely localized within the regions of the genome that are specific to O157 compared to E. coli K-12 (O islands), suggesting that strain-to-strain variation occurs in these O islands. These results may be utilized to devise novel strain-typing tools for this pathogen.


Infection and Immunity | 2005

Use of in vivo-induced antigen technology for identification of Escherichia coli O157:H7 proteins expressed during human infection

Manohar John; Indira T. Kudva; Robert W. Griffin; Allen W. Dodson; Bethany McManus; Bryan Krastins; David Sarracino; Ann Progulske-Fox; Jeffrey D. Hillman; Martin Handfield; Phillip I. Tarr; Stephen B. Calderwood

ABSTRACT Using in vivo-induced antigen technology (IVIAT), a modified immunoscreening technique that circumvents the need for animal models, we directly identified immunogenic Escherichia coli O157:H7 (O157) proteins expressed either specifically during human infection but not during growth under standard laboratory conditions or at significantly higher levels in vivo than in vitro. IVIAT identified 223 O157 proteins expressed during human infection, several of which were unique to this study. These in vivo-induced (ivi) proteins, encoded by ivi genes, mapped to the backbone, O islands (OIs), and pO157. Lack of in vitro expression of O157-specific ivi proteins was confirmed by proteomic analysis of a mid-exponential-phase culture of E. coli O157 grown in LB broth. Because ivi proteins are expressed in response to specific cues during infection and might help pathogens adapt to and counter hostile in vivo environments, those identified in this study are potential targets for drug and vaccine development. Also, such proteins may be exploited as markers of O157 infection in stool specimens.


Infection and Immunity | 2000

Ruminant Gastrointestinal Cell Proliferation and Clearance of Escherichia coli O157:H7

Bernadene A. Magnuson; Margaret Davis; Suzanna Hubele; Paula R. Austin; Indira T. Kudva; Christopher J. Williams; Carl W. Hunt; Carolyn J. Hovde

ABSTRACT Human infections with Escherichia coli O157:H7 cause hemorrhagic colitis that can progress to a life-threatening sequelae. The most common mode of disease transmission is ingestion of contaminated bovine food products, and it is well established thatE. coli O157:H7 is a transient member of the bovine microbiota. However, the conditions that induce acquisition and subsequent clearance of this bacterium from the ruminant gastrointestinal tract (GIT) are not understood. Evidence that the rates of epithelial cell proliferation in the lower GIT of cattle are associated with the duration animals remained E. coliO157:H7 culture positive is presented. Cattle with slower rates of intestinal cell proliferation in the cecum and the distal colon were culture positive significantly longer than cohort cattle with faster cell proliferation rates. Cell death rates (apoptotic indices) between the short- and long-term culture-positive animals were not different. Typical grain-based finishing diets and forage-based growing diets did not effect GIT cell proliferation or the duration animals remained E. coli O157:H7 culture positive. To identify a dietary intervention that would effect GIT cell proliferation, we used sheep as a model ruminant. A fasting-refeeding regime that increased the rate of GIT cell proliferation was developed. The fasting-refeeding protocol was used in cattle to test the hypothesis that feeding interventions that increase the rate of GIT cell proliferation induce the clearance of E. coli O157:H7 from the bovine GIT.


Clinical and Vaccine Immunology | 2010

Characterization of anti-Salmonella enterica serotype Typhi antibody responses in bacteremic Bangladeshi patients by an immunoaffinity proteomics-based technology.

Richelle C. Charles; Alaullah Sheikh; Bryan Krastins; Jason B. Harris; Md. Saruar Bhuiyan; Regina C. LaRocque; Tanya Logvinenko; David Sarracino; Indira T. Kudva; J. Eisenstein; Michael J. Podolsky; Anuj Kalsy; W. A. Brooks; Albrecht Ludwig; Manohar John; Stephen B. Calderwood; Firdausi Qadri; Edward T. Ryan

ABSTRACT Salmonella enterica serotype Typhi is the cause of typhoid fever and a human-restricted pathogen. Currently available typhoid vaccines provide 50 to 90% protection for 2 to 5 years, and available practical diagnostic assays to identify individuals with typhoid fever lack sensitivity and/or specificity. Identifying immunogenic S. Typhi antigens expressed during human infection could lead to improved diagnostic assays and vaccines. Here we describe a platform immunoaffinity proteomics-based technology (IPT) that involves the use of columns charged with IgG, IgM, or IgA antibody fractions recovered from humans bacteremic with S. Typhi to capture S. Typhi proteins that were subsequently identified by mass spectrometry. This screening tool identifies immunogenic proteins recognized by antibodies from infected hosts. Using this technology and the plasma of patients with S. Typhi bacteremia in Bangladesh, we identified 57 proteins of S. Typhi, including proteins known to be immunogenic (PagC, HlyE, OmpA, and GroEL) and a number of proteins present in the human-restricted serotypes S. Typhi and S. Paratyphi A but rarely found in broader-host-range Salmonella spp. (HlyE, CdtB, PltA, and STY1364). We categorized identified proteins into a number of major groupings, including those involved in energy metabolism, protein synthesis, iron homeostasis, and biosynthetic and metabolic functions and those predicted to localize to the outer membrane. We assessed systemic and mucosal anti-HlyE responses in S. Typhi-infected patients and detected anti-HlyE responses at the time of clinical presentation in patients but not in controls. These findings could assist in the development of improved diagnostic assays.


Infection and Immunity | 2005

Identification of a Protein Subset of the Anthrax Spore Immunome in Humans Immunized with the Anthrax Vaccine Adsorbed Preparation

Indira T. Kudva; Robert W. Griffin; Jeonifer Garren; Stephen B. Calderwood; Manohar John

ABSTRACT We identified spore targets of Anthrax Vaccine Adsorbed (AVA)-induced immunity in humans by screening recombinant clones of a previously generated, limited genomic Bacillus anthracis Sterne (pXO1+, pXO2−) expression library of putative spore surface (spore-associated [SA]) proteins with pooled sera from human adults immunized with AVA (immune sera), the anthrax vaccine currently approved for use by humans in the United States. We identified 69 clones that reacted specifically with pooled immune sera but not with pooled sera obtained from the same individuals prior to immunization. Positive clones expressed proteins previously identified as localized on the anthrax spore surface, proteins highly expressed during spore germination, orthologs of proteins of diverse pathogens under investigation as drug targets, and orthologs of proteins contributing to the virulence of both gram-positive and gram-negative pathogens. Among the reactive clones identified by this immunological screen was one expressing a 15.2-kDa hypothetical protein encoded by a gene with no significant homology to sequences contained in databases. Further studies are required to define the subset of SA proteins identified in this study that contribute to the virulence of this pathogen. We hypothesize that optimal delivery of a subset of SA proteins identified by such studies to the immune system in combination with protective antigen (PA), the principal immunogen in AVA, might facilitate the development of defined, nonreactogenic, more-efficacious PA-based anthrax vaccines. Future studies might also facilitate the identification of SA proteins with potential to serve as targets for drug design, spore inactivation, or spore detection strategies.


Clinics in Laboratory Medicine | 2013

Bacterial strain typing

Indira T. Kudva; Stephen B. Calderwood; Frederick M. Ausubel

Over the course of the past several decades, rapid advancements in molecular technologies have revolutionized the practice of public health microbiology, and have fundamentally changed the nature, accuracy, and timeliness of laboratory data for outbreak investigation and response. Whole-genome sequencing, in particular, is becoming an increasingly feasible and cost-effective approach for near real-time high-resolution strain typing, genomic characterization, and comparative analyses. This review discusses the current state of the art in bacterial strain typing for outbreak investigation and infectious disease surveillance, and the impact of emerging genomic technologies on the field of public health microbiology.


BMC Microbiology | 2012

Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells

Indira T. Kudva; Robert S. Griffin; Bryan Krastins; David Sarracino; Stephen B. Calderwood; Manohar John

BackgroundIn this study, we present evidence that proteins encoded by the Locus of Enterocyte Effacement (LEE), considered critical for Escherichia coli O157 (O157) adherence to follicle-associated epithelial (FAE) cells at the bovine recto-anal junction (RAJ), do not appear to contribute to O157 adherence to squamous epithelial (RSE) cells also constituting this primary site of O157 colonization in cattle.ResultsAntisera targeting intimin-γ, the primary O157 adhesin, and other essential LEE proteins failed to block O157 adherence to RSE cells, when this pathogen was grown in DMEM, a culture medium that enhances expression of LEE proteins. In addition, RSE adherence of a DMEM-grown-O157 mutant lacking the intimin protein was comparable to that seen with its wild-type parent O157 strain grown in the same media. These adherence patterns were in complete contrast to that observed with HEp-2 cells (the adherence to which is mediated by intimin-γ), assayed under same conditions. This suggested that proteins other than intimin-γ that contribute to adherence to RSE cells are expressed by this pathogen during growth in DMEM. To identify such proteins, we defined the proteome of DMEM-grown-O157 (DMEM-proteome). GeLC-MS/MS revealed that the O157 DMEM-proteome comprised 684 proteins including several components of the cattle and human O157 immunome, orthologs of adhesins, hypothetical secreted and outer membrane proteins, in addition to the known virulence and LEE proteins. Bioinformatics-based analysis of the components of the O157 DMEM proteome revealed several new O157-specific proteins with adhesin potential.ConclusionProteins other than LEE and intimin-γ proteins are involved in O157 adherence to RSE cells at the bovine RAJ. Such proteins, with adhesin potential, are expressed by this human pathogen during growth in DMEM. Ongoing experiments to evaluate their role in RSE adherence should provide both valuable insights into the O157-RSE interactions and new targets for more efficacious anti-adhesion O157 vaccines.


Molecular & Cellular Proteomics | 2006

Proteomics-based expression library screening (PELS) - a novel method for rapidly defining microbial immunoproteomes

Indira T. Kudva; Bryan Krastins; Haiqing Sheng; Robert W. Griffin; David Sarracino; Phillip I. Tarr; Carolyn J. Hovde; Stephen B. Calderwood; Manohar John

Current methodologies for global identification of microbial proteins that elicit host humoral immune responses have several limitations and are not ideally suited for use in the postgenomic era. Here we describe a novel application of proteomics, proteomics-based expression library screening, to rapidly define microbial immunoproteomes. Proteomics-based expression library screening is broadly applicable to any cultivable, sequenced pathogen eliciting host antibody responses and hence is ideal for rapidly mining microbial proteomes for targets with diagnostic, prophylactic, and therapeutic potential. In this report, we demonstrate “proof-of-principle” by identifying 207 proteins of the Escherichia coli O157:H7 immunome in bovine reservoirs in only 3 weeks.

Collaboration


Dive into the Indira T. Kudva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan Krastins

Thermo Fisher Scientific

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle Qiu Carter

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Robab Katani

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria T. Brandl

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge