Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Indrani Datta is active.

Publication


Featured researches published by Indrani Datta.


PLOS ONE | 2012

Genome-Wide Association Study of African and European Americans Implicates Multiple Shared and Ethnic Specific Loci in Sarcoidosis Susceptibility

Indra Adrianto; Chee Paul Lin; Jessica J. Hale; A. Levin; Indrani Datta; Ryan Parker; Adam Adler; Jennifer A. Kelly; Kenneth M. Kaufman; Christopher J. Lessard; Kathy L. Moser; Robert P. Kimberly; John B. Harley; Michael C. Iannuzzi; Benjamin A. Rybicki; Courtney G. Montgomery

Sarcoidosis is a systemic inflammatory disease characterized by the formation of granulomas in affected organs. Genome-wide association studies (GWASs) of this disease have been conducted only in European population. We present the first sarcoidosis GWAS in African Americans (AAs, 818 cases and 1,088 related controls) followed by replication in independent sets of AAs (455 cases and 557 controls) and European Americans (EAs, 442 cases and 2,284 controls). We evaluated >6 million SNPs either genotyped using the Illumina Omni1-Quad array or imputed from the 1000 Genomes Project data. We identified a novel sarcoidosis-associated locus, NOTCH4, that reached genome-wide significance in the combined AA samples (rs715299, P AA-meta = 6.51×10−10) and demonstrated the independence of this locus from others in the MHC region in the same sample. We replicated previous European GWAS associations within HLA-DRA, HLA-DRB5, HLA-DRB1, BTNL2, and ANXA11 in both our AA and EA datasets. We also confirmed significant associations to the previously reported HLA-C and HLA-B regions in the EA but not AA samples. We further identified suggestive associations with several other genes previously reported in lung or inflammatory diseases.


Genes and Immunity | 2011

A genome-wide admixture scan for ancestry-linked genes predisposing to sarcoidosis in African-Americans.

Benjamin A. Rybicki; A. Levin; Paul McKeigue; Indrani Datta; Courtney Gray-McGuire; Marco Colombo; David Reich; Robert R. Burke; Michael C. Iannuzzi

Genome-wide linkage and association studies have uncovered variants associated with sarcoidosis, a multiorgan granulomatous inflammatory disease. African ancestry may influence disease pathogenesis, as African-Americans are more commonly affected by sarcoidosis. Therefore, we conducted the first sarcoidosis genome-wide ancestry scan using a map of 1384 highly ancestry-informative single-nucleotide polymorphisms genotyped on 1357 sarcoidosis cases and 703 unaffected controls self-identified as African-American. The most significant ancestry association was at marker rs11966463 on chromosome 6p22.3 (ancestry association risk ratio (aRR)=1.90; P=0.0002). When we restricted the analysis to biopsy-confirmed cases, the aRR for this marker increased to 2.01; P=0.00007. Among the eight other markers that demonstrated suggestive ancestry associations with sarcoidosis were rs1462906 on chromosome 8p12, which had the most significant association with European ancestry (aRR=0.65; P=0.002), and markers on chromosomes 5p13 (aRR=1.46; P=0.005) and 5q31 (aRR=0.67; P=0.005), which correspond to regions we previously identified through sib-pair linkage analyses. Overall, the most significant ancestry association for Scadding stage IV cases was to marker rs7919137 on chromosome 10p11.22 (aRR=0.27; P=2 × 10−5), a region not associated with disease susceptibility. In summary, through admixture mapping of sarcoidosis we have confirmed previous genetic linkages and identified several novel putative candidate loci for sarcoidosis.


Journal of clinical & cellular immunology | 2013

Profile of Circulatory Metabolites in a Relapsing-remitting Animal Model of Multiple Sclerosis using Global Metabolomics

Ashutosh Mangalam; Laila M. Poisson; Nemutlu E; Indrani Datta; Aleksandar Denic; Dzeja P; Moses Rodriguez; Ramandeep Rattan; Shailendra Giri

Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the CNS. Although, MS is well characterized in terms of the role played by immune cells, cytokines and CNS pathology, nothing is known about the metabolic alterations that occur during the disease process in circulation. Recently, metabolic aberrations have been defined in various disease processes either as contributing to the disease, as potential biomarkers, or as therapeutic targets. Thus in an attempt to define the metabolic alterations that may be associated with MS disease progression, we profiled the plasma metabolites at the chronic phase of disease utilizing relapsing remitting-experimental autoimmune encephalomyelitis (RR-EAE) model in SJL mice. At the chronic phase of the disease (day 45), untargeted global metabolomic profiling of plasma collected from EAE diseased SJL and healthy mice was performed, using a combination of high-throughput liquid-and-gas chromatography with mass spectrometry. A total of 282 metabolites were identified, with significant changes observed in 44 metabolites (32 up-regulated and 12 down-regulated), that mapped to lipid, amino acid, nucleotide and xenobiotic metabolism and distinguished EAE from healthy group (p<0.05, false discovery rate (FDR)<0.23). Mapping the differential metabolite signature to their respective biochemical pathways using the Kyoto Encyclopedia of Genes and Genomics (KEGG) database, we found six major pathways that were significantly altered (containing concerted alterations) or impacted (containing alteration in key junctions). These included bile acid biosynthesis, taurine metabolism, tryptophan and histidine metabolism, linoleic acid and D-arginine metabolism pathways. Overall, this study identified a 44 metabolite signature drawn from various metabolic pathways which correlated well with severity of the EAE disease, suggesting that these metabolic changes could be exploited as (1) biomarkers for EAE/MS progression and (2) to design new treatment paradigms where metabolic interventions could be combined with present and experimental therapeutics to achieve better treatment of MS.


PLOS ONE | 2014

Admixture Fine-Mapping in African Americans Implicates XAF1 as a Possible Sarcoidosis Risk Gene

A. Levin; Michael C. Iannuzzi; Courtney G. Montgomery; Sheri Trudeau; Indrani Datta; Indra Adrianto; Dhananjay Chitale; Paul McKeigue; Benjamin A. Rybicki

Sarcoidosis is a complex, multi-organ granulomatous disease with a likely genetic component. West African ancestry confers a higher risk for sarcoidosis than European ancestry. Admixture mapping provides the most direct method to locate genes that underlie such ethnic variation in disease risk. We sought to identify genetic risk variants within four previously-identified ancestry-associated regions—6p24.3–p12.1, 17p13.3–13.1, 2p13.3–q12.1, and 6q23.3–q25.2—in a sample of 2,727 African Americans. We used logistic regression fit by generalized estimating equations and the MIX score statistic to determine which variants within ancestry-associated regions were associated with risk and responsible for the admixture signal. Fine mapping was performed by imputation, based on a previous genome-wide association study; significant variants were validated by direct genotyping. Within the 6p24.3–p12.1 locus, the most significant ancestry-adjusted SNP was rs74318745 (p = 9.4*10−11), an intronic SNP within the HLA-DRA gene that did not solely explain the admixture signal, indicating the presence of more than a single risk variant within this well-established sarcoidosis risk region. The locus on chromosome 17p13.3–13.1 revealed a novel sarcoidosis risk SNP, rs6502976 (p = 9.5*10−6), within intron 5 of the gene X-linked Inhibitor of Apoptosis Associated Factor 1 (XAF1) that accounted for the majority of the admixture linkage signal. Immunohistochemical expression studies demonstrated lack of expression of XAF1 and a corresponding high level of expression of its downstream target, X-linked Inhibitor of Apoptosis (XIAP) in sarcoidosis granulomas. In conclusion, ancestry and association fine mapping revealed a novel sarcoidosis susceptibility gene, XAF1, which has not been identified by previous genome-wide association studies. Based on the known biology of the XIAP/XAF1 apoptosis pathway and the differential expression patterns of XAF1 and XIAP in sarcoidosis granulomas, we suggest that this pathway may play a role in the maintenance of sarcoidosis granulomas.


BMC Genetics | 2014

Performance of HLA allele prediction methods in African Americans for class II genes HLA-DRB1, −DQB1, and –DPB1

A. Levin; Indra Adrianto; Indrani Datta; Michael C. Iannuzzi; Sheri Trudeau; Paul McKeigue; Courtney G. Montgomery; Benjamin A. Rybicki

BackgroundThe expense of human leukocyte antigen (HLA) allele genotyping has motivated the development of imputation methods that use dense single nucleotide polymorphism (SNP) genotype data and the region’s haplotype structure, but the performance of these methods in admixed populations (such as African Americans) has not been adequately evaluated. We compared genotype-based—derived from both genome-wide genotyping and targeted sequencing—imputation results to existing allele data for HLA–DRB1, −DQB1, and –DPB1.ResultsIn European Americans, the newly-developed HLA Genotype Imputation with Attribute Bagging (HIBAG) method outperformed HLA*IMP:02. In African Americans, HLA*IMP:02 performed marginally better than HIBAG pre-built models, but HIBAG models constructed using a portion of our African American sample with both SNP genotyping and four-digit HLA class II allele typing had consistently higher accuracy than HLA*IMP:02. However, HIBAG was significantly less accurate in individuals heterozygous for local ancestry (p ≤0.04). Accuracy improved in models with equal numbers of African and European chromosomes. Variants added by targeted sequencing and SNP imputation further improved both imputation accuracy and the proportion of high quality calls.ConclusionCombining the HIBAG approach with local ancestry and dense variant data can produce highly-accurate HLA class II allele imputation in African Americans.


Journal of Biological Chemistry | 2015

Untargeted plasma metabolomics identifies endogenous metabolite with drug-like properties in chronic animal model of multiple sclerosis

Laila M. Poisson; Hamid Suhail; Jaspreet Singh; Indrani Datta; Aleksandar Denic; Krzysztof Labuzek; Nasrul Hoda; Ashray Shankar; Ashok Kumar; Mirela Cerghet; Stanton B. Elias; Robert P. Mohney; Moses Rodriguez; Ramandeep Rattan; Ashutosh Mangalam; Shailendra Giri

We performed untargeted metabolomics in plasma of B6 mice with experimental autoimmune encephalitis (EAE) at the chronic phase of the disease in search of an altered metabolic pathway(s). Of 324 metabolites measured, 100 metabolites that mapped to various pathways (mainly lipids) linked to mitochondrial function, inflammation, and membrane stability were observed to be significantly altered between EAE and control (p < 0.05, false discovery rate <0.10). Bioinformatics analysis revealed six metabolic pathways being impacted and altered in EAE, including α-linolenic acid and linoleic acid metabolism (PUFA). The metabolites of PUFAs, including ω-3 and ω-6 fatty acids, are commonly decreased in mouse models of multiple sclerosis (MS) and in patients with MS. Daily oral administration of resolvin D1, a downstream metabolite of ω-3, decreased disease progression by suppressing autoreactive T cells and inducing an M2 phenotype of monocytes/macrophages and resident brain microglial cells. This study provides a proof of principle for the application of metabolomics to identify an endogenous metabolite(s) possessing drug-like properties, which is assessed for therapy in preclinical mouse models of MS.


Disease Markers | 2015

Genome-Wide Scan for Methylation Profiles in Keloids

Lamont R. Jones; William Greg Young; George Divine; Indrani Datta; Kang Mei Chen; David M. Ozog; Maria J. Worsham

Keloids are benign fibroproliferative tumors of the skin which commonly occur after injury mainly in darker skinned patients. Medical treatment is fraught with high recurrence rates mainly because of an incomplete understanding of the biological mechanisms that lead to keloids. The purpose of this project was to examine keloid pathogenesis from the epigenome perspective of DNA methylation. Genome-wide profiling used the Infinium HumanMethylation450 BeadChip to interrogate DNA from 6 fresh keloid and 6 normal skin samples from 12 anonymous donors. A 3-tiered approach was used to call out genes most differentially methylated between keloid and normal. When compared to normal, of the 685 differentially methylated CpGs at Tier 3, 510 were hypomethylated and 175 were hypermethylated with 190 CpGs in promoter and 495 in nonpromoter regions. The 190 promoter region CpGs corresponded to 152 genes: 96 (63%) were hypomethylated and 56 (37%) hypermethylated. This exploratory genome-wide scan of the keloid methylome highlights a predominance of hypomethylated genomic landscapes, favoring nonpromoter regions. DNA methylation, as an additional mechanism for gene regulation in keloid pathogenesis, holds potential for novel treatments that reverse deleterious epigenetic changes. As an alternative mechanism for regulating genes, epigenetics may explain why gene mutations alone do not provide definitive mechanisms for keloid formation.


American Journal of Respiratory Cell and Molecular Biology | 2014

Association of HLA-DRB1 with Sarcoidosis Susceptibility and Progression in African Americans

A. Levin; Indra Adrianto; Indrani Datta; Michael C. Iannuzzi; Sheri Trudeau; Jia Li; Wonder P. Drake; Courtney G. Montgomery; Benjamin A. Rybicki

HLA-DRB1 is a sarcoidosis risk gene, and the *03:01 allele is strongly associated with disease resolution in European sarcoidosis cases. Whereas the HLA-DRB1 variation is associated with sarcoidosis susceptibility in African Americans, DRB1 risk alleles are not as well defined, and associations with disease resolution have not been studied. Associations between genotyped and imputed HLA-DRB1 alleles and disease susceptibility/resolution were evaluated in a sample of 1,277 African-American patients with sarcoidosis and 1,467 control subjects. In silico binding assays were performed to assess the functional significance of the associated alleles. Increased disease susceptibility was associated with the HLA-DRB1 alleles *12:01 (odds ratio [OR], 2.11; 95% confidence interval [CI], 1.65-2.69; P = 3.2 × 10(-9)) and *11:01 (OR, 1.69; 95% CI, 1.42-2.01; P = 3.0 × 10(-9)). The strongest protective association was found with *03:01 (OR, 0.56; 95% CI, 0.44-0.73; P = 1.0 × 10(-5)). The African-derived allele *03:02 was associated with decreased risk of persistent radiographic disease (OR, 0.52; 95% CI, 0.37-0.72; P = 1.3 × 10(-4)), a finding consistent across the three component studies comprising the analytic sample. The DRB1*03:01 association with disease persistence was dependent upon local ancestry, with carriers of at least one European allele at DRB1 at a decreased risk of persistent disease (OR, 0.36; 95% CI, 0.14-0.94; P = 0.037). Results of in silico binding analyses showed that DRB1*03:01 consistently demonstrated the highest binding affinities for six bacterial peptides previously found in sarcoidosis granulomas, whereas *12:01 displayed the lowest binding affinities. This study has identified DRB1*03:01 and *03:02 as novel alleles associated with disease susceptibility and course in African Americans. Further investigation of DRB1*03 alleles may uncover immunologic factors that favor sarcoidosis protection and resolution among African Americans.


The Prostate | 2014

Case-only gene–environment interaction between ALAD tagSNPs and occupational lead exposure in prostate cancer

Christine Neslund-Dudas; A. Levin; Andrew Rundle; Jennifer L. Beebe-Dimmer; Cathryn H. Bock; Nora L. Nock; Michelle Jankowski; Indrani Datta; Richard Krajenta; Q. Ping Dou; Bharati Mitra; Deliang Tang; Benjamin A. Rybicki

Black men have historically had higher blood lead levels than white men in the U.S. and have the highest incidence of prostate cancer in the world. Inorganic lead has been classified as a probable human carcinogen. Lead (Pb) inhibits delta‐aminolevulinic acid dehydratase (ALAD), a gene recently implicated in other genitourinary cancers. The ALAD enzyme is involved in the second step of heme biosynthesis and is an endogenous inhibitor of the 26S proteasome, a master system for protein degradation and a current target of cancer therapy.


Oncotarget | 2017

The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells

Shlomit Brodie; Hae Kyung Lee; Wei Jiang; Simona Cazacu; Cunli Xiang; Laila M. Poisson; Indrani Datta; Steve Kalkanis; Doron Ginsberg; Chaya Brodie

Despite advances in novel therapeutic approaches for the treatment of glioblastoma (GBM), the median survival of 12-14 months has not changed significantly. Therefore, there is an imperative need to identify molecular mechanisms that play a role in patient survival. Here, we analyzed the expression and functions of a novel lncRNA, TALNEC2 that was identified using RNA seq of E2F1-regulated lncRNAs. TALNEC2 was localized to the cytosol and its expression was E2F1-regulated and cell-cycle dependent. TALNEC2 was highly expressed in GBM with poor prognosis, in GBM specimens derived from short-term survivors and in glioma cells and glioma stem cells (GSCs). Silencing of TALNEC2 inhibited cell proliferation and arrested the cells in the G1\S phase of the cell cycle in various cancer cell lines. In addition, silencing of TALNEC2 decreased the self-renewal and mesenchymal transformation of GSCs, increased sensitivity of these cells to radiation and prolonged survival of mice bearing GSC-derived xenografts. Using miRNA array analysis, we identified specific miRNAs that were altered in the silenced cells that were associated with cell-cycle progression, proliferation and mesenchymal transformation. Two of the downregulated miRNAs, miR-21 and miR-191, mediated some of TALNEC2 effects on the stemness and mesenchymal transformation of GSCs. In conclusion, we identified a novel E2F1-regulated lncRNA that is highly expressed in GBM and in tumors from patients of short-term survival. The expression of TALNEC2 is associated with the increased tumorigenic potential of GSCs and their resistance to radiation. We conclude that TALNEC2 is an attractive therapeutic target for the treatment of GBM.

Collaboration


Dive into the Indrani Datta's collaboration.

Top Co-Authors

Avatar

A. Levin

Henry Ford Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Divine

Henry Ford Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael C. Iannuzzi

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Kang Mei Chen

Henry Ford Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Courtney G. Montgomery

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge