Indu B. Chatterjee
University of Calcutta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Indu B. Chatterjee.
Free Radical Biology and Medicine | 2000
Koustubh Panda; Ranajoy Chattopadhyay; Dhruba J. Chattopadhyay; Indu B. Chatterjee
Our recent in vitro results [4] indicate that cigarette smoke induces oxidation of human plasma proteins and extensive oxidative degradation of the guinea pig lung, heart, and liver microsomal proteins, which is almost completely prevented by ascorbic acid. In this paper, we substantiate the in vitro results with in vivo observations. We demonstrate that exposure of subclinical or marginal vitamin C-deficient guinea pigs to cigarette smoke causes oxidation of plasma proteins as well as extensive oxidative degradation of the lung microsomal proteins. Cigarette smoke exposure also results in some discernible damage of the heart microsomal proteins. The oxidative damage has been manifested by SDS-PAGE, accumulation of carbonyl and bityrosine, as well as loss of tryptophan and protein thiols. Cigarette smoke exposure also induces peroxidation of microsomal lipids as evidenced by the formation of conjugated dienes, malondialdehyde, and fluorescent pigment. Cigarette smoke-induced oxidative damage of proteins and peroxidation of lipids are accompanied by marked drop in the tissue ascorbate levels. Protein damage and lipid peroxidation are also observed in cigarette smoke-exposed pair-fed guinea pigs receiving 5 mg vitamin C/animal/day. However, complete protection against protein damage and lipid peroxidation occurs when the guinea pigs are fed 15 mg vitamin C/animal/day. Also, the cigarette smoke-induced oxidative damage of proteins and lipid is reversed after discontinuation of cigarette smoke exposure accompanied by ascorbate therapy. The results, if extrapolated to humans, indicate that comparatively large doses of vitamin C may protect the smokers from cigarette smoke-induced oxidative damage and associated degenerative diseases.
Free Radical Biology and Medicine | 1999
Koustubh Panda; Ranajoy Chattopadhyay; Mrinal K. Ghosh; Dhruba J. Chattopadhyay; Indu B. Chatterjee
Aqueous extract of cigarette smoke (CS) contains some stable oxidants, which oxidize human plasma proteins, bovine serum albumin, amino acid homopolymers, and also cause extensive oxidative degradation of microsomal proteins. Similar observations are made when the aqueous extract of cigarette smoke is replaced by whole phase CS solution or whole phase cigarette smoke. CS-induced microsomal protein degradation is a two step process: (i) oxidation of proteins by the oxidants present in the CS and (ii) rapid proteolytic degradation of the oxidized proteins by proteases present in the microsomes. Using aqueous extract of CS equivalent to that produced from one-twentieth of a cigarette, the observed initial and postcigarette smoke treated values of different parameters of oxidative damage per milligram of microsomal proteins are respectively: 0.24 and 1.74 nmoles for carbonyl formation, 125.4 and 62.8 fluorescence units for tryptophan loss, 10.2 and 33.4 fluorescence units for bityrosine formation, and 58.3 and 12.2 nmoles for loss of protein thiols. When compared with sodium dodecyl sulphate polyacrylamide gel electrophoresis profiles of untreated microsomal proteins, the extent of microsomal protein degradation after treatment with whole phase CS solution or aqueous extract of CS is above 90%. Ascorbate (100 microM) almost completely prevents cigarette smoke-induced protein oxidation and thereby protects the microsomes from subsequent proteolytic degradation. Glutathione is partially effective, but other antioxidants including superoxide dismutase, catalase, vitamin E, probucol, beta-carotene, mannitol, thiourea, and histidine are ineffective. The gas phase cigarette smoke contains unstable reactive oxygen species such as superoxide (O2*-) and hydrogen peroxide (H2O2) that can cause substantial oxidation of pure protein like albumin but is unable to produce significant oxidative damage of microsomal proteins. Gas phase cigarette smoke-induced albumin oxidation is not only inhibited by ascorbate and glutathione but also by superoxide dismutase, catalase and mannitol. The stable oxidants in the cigarette smoke are not present in the tobacco and are apparently produced by the interaction of O2*-/H2O2/OH* of the gas phase with some components of the tar phase during/following the burning of tobacco.
Free Radical Biology and Medicine | 1997
Anuradha Nandi; Chinmay K. Mukhopadhyay; Mrinal K. Ghosh; Dhruba J. Chattopadhyay; Indu B. Chatterjee
Evolution of vertebrates from aquatic medium to the terrestrial atmosphere containing high concentration of environmental oxygen was accompanied by tissue-specific expression of the gene for L-gulonolactone oxidase (LGO). LGO is the terminal enzyme in the pathway of biosynthesis of ascorbic acid in animals. In this paper we present data to indicate that emergence of LGO is apparently to provide the terrestrial vertebrates with adequate amount of ascorbic acid and thereby protect their tissues against oxygen toxicity. Superoxide dismutase (SOD) was not induced in the early tetrapods. However, SOD activity has increased in the mammals which is accompanied by a decrease in the LGO activity. In fact, there has been an inverse relationship between LGO and SOD in the progress of evolution. SOD activity is markedly high in the guinea pig, flying mammal, monkey and man, the species those lack LGO. The inverse relationship between LGO and SOD is also observed in rats during postnatal development, that is when the new born rats are exposed to high concentration of atmospheric oxygen. Recent results from our laboratory indicate that ascorbic acid is specifically needed for protection of microsomal membranes against cytochrome P450-mediated lipid peroxidation and protein oxidation, where SOD is ineffective. Data presented in this paper also indicate an apparent tissue-specific correlation among LGO activity, P450 level and O2.- production during phylogenetic evolution.
Journal of Inflammation | 2007
Shuvojit Banerjee; Palas Maity; Subhendu Mukherjee; Alok K Sil; Koustubh Panda; Dhrubajyoti Chattopadhyay; Indu B. Chatterjee
BackgroundCigarette smoking is a major cause of lung damage. One prominent deleterious effect of cigarette smoke is oxidative stress. Oxidative stress may lead to apoptosis and lung injury. Since black tea has antioxidant property, we examined the preventive effect of black tea on cigarette smoke-induced oxidative damage, apoptosis and lung injury in a guinea pig model.MethodsGuinea pigs were subjected to cigarette smoke exposure from five cigarettes (two puffs/cigarette) per guinea pig/day for seven days and given water or black tea to drink. Sham control guinea pigs were exposed to air instead of cigarette smoke. Lung damage, as evidenced by inflammation and increased air space, was assessed by histology and morphometric analysis. Protein oxidation was measured through oxyblot analysis of dinitrophenylhydrazone derivatives of the protein carbonyls of the oxidized proteins. Apoptosis was evidenced by the fragmentation of DNA using TUNEL assay, activation of caspase 3, phosphorylation of p53 as well as over-expression of Bax by immunoblot analyses.ResultsCigarette smoke exposure to a guinea pig model caused lung damage. It appeared that oxidative stress was the initial event, which was followed by inflammation, apoptosis and lung injury. All these pathophysiological events were prevented when the cigarette smoke-exposed guinea pigs were given black tea infusion as the drink instead of water.ConclusionCigarette smoke exposure to a guinea pig model causes oxidative damage, inflammation, apoptosis and lung injury that are prevented by supplementation of black tea.
Journal of Inflammation | 2008
Shuvojit Banerjee; Ranajoy Chattopadhyay; Arunava Ghosh; Hemanta Koley; Koustubh Panda; Siddhartha Roy; Dhrubajyoti Chattopadhyay; Indu B. Chatterjee
BackgroundCigarette smoke-induced cellular and molecular mechanisms of lung injury are not clear. Cigarette smoke is a complex mixture containing long-lived radicals, including p-benzosemiquinone that causes oxidative damage. Earlier we had reported that oxidative protein damage is an initial event in smoke-induced lung injury. Considering that p-benzosemiquinone may be a causative factor of lung injury, we have isolated p-benzosemiquinone and compared its pathophysiological effects with cigarette smoke. Since vitamin C is a strong antioxidant, we have also determined the modulatory effect of vitamin C for preventing the pathophysiological events.MethodsVitamin C-restricted guinea pigs were exposed to cigarette smoke (5 cigarettes/day; 2 puffs/cigarette) for 21 days with and without supplementation of 15 mg vitamin C/guinea pig/day. Oxidative damage, apoptosis and lung injury were assessed in vitro, ex vivo in A549 cells as well as in vivo in guinea pigs. Inflammation was measured by neutrophilia in BALF. p-Benzosemiquinone was isolated from freshly prepared aqueous extract of cigarette smoke and characterized by various physico-chemical methods, including mass, NMR and ESR spectroscopy. p-Benzosemiquinone-induced lung damage was examined by intratracheal instillation in guinea pigs. Lung damage was measured by increased air spaces, as evidenced by histology and morphometric analysis. Oxidative protein damage, MMPs, VEGF and VEGFR2 were measured by western blot analysis, and formation of Michael adducts using MALDI-TOF-MS. Apoptosis was evidenced by TUNEL assay, activation of caspase 3, degradation of PARP and increased Bax/Bcl-2 ratio using immunoblot analysis and confocal microscopy.ResultsExposure of guinea pigs to cigarette smoke resulted in progressive protein damage, inflammation, apoptosis and lung injury up to 21 days of the experimental period. Administration of 15 mg of vitamin C/guinea pig/day prevented all these pathophysiological effects. p-Benzosemiquinone mimicked cigarette smoke in causing protein modification and apoptosis in vitro and in A549 cells ex vivo as well as apoptosis and lung damage in vivo. All these pathophysiological events were also prevented by vitamin C.Conclusionp-Benzosemiquinone appears to be a major causative factor of cigarette smoke-induced oxidative protein damage that leads to apoptosis and lung injury. The pathophysiological events are prevented by a moderately large dose of vitamin C.
Toxicology Letters | 2001
Koustubh Panda; Ranajoy Chattopadhyay; Dhrubajyoti Chattopadhyay; Indu B. Chatterjee
We have reported before that whole phase cigarette smoke (CS) contains stable oxidants that cause oxidative damage and increased proteolysis of proteins [Free Radic. Biol. Med. 27 (1999) 1064]. Here, we demonstrate that these oxidants are exclusively present in the tar phase of the CS and not its gas phase and can almost wholly account for the observed whole phase CS-induced oxidation of human plasma proteins as well as extensive oxidative proteolysis of guinea pig lung and heart microsomal proteins in vitro. The mechanism of the tar phase CS-induced proteolysis of microsomal proteins involves two-steps: (i) initial oxidation of the proteins by oxidants present in the tar extract followed by (ii) rapid proteolytic degradation of the oxidized proteins by proteases present in the microsomes. Like the whole phase CS, the oxidative damage of proteins caused by the tar phase CS, as evidenced by the formation of protein carbonyl and bityrosine as well as loss of tryptophan residues and thiol groups, is also almost completely prevented by ascorbic acid and only partially by glutathione. Other antioxidants, including superoxide dismutase, catalase, vitamin E, beta-carotene and mannitol are ineffective. This again leads us to suggest that adequate intake of vitamin C may help smokers to evade the CS-induced degenerative diseases associated with oxidative damage. The revelation of the acute toxicity of the tar phase with respect to CS-induced oxidative damage also urges the necessity of trapping it more effectively by suitable cigarette filters to reduce the health damage caused to smokers.
PLOS ONE | 2012
Archita Das; Neekkan Dey; Arunava Ghosh; Shovanendu Das; Dhruba J. Chattopadhyay; Indu B. Chatterjee
Background Cardiovascular disease (CVD) remains one of the major killers in modern society. One strong risk factor of CVD is cigarette smoking that causes myocardial injury and leads to the genesis of pathological cardiovascular events. However, the exact toxic component(s) of cigarette smoke (CS) and its molecular and cellular mechanisms for causing myocardial injury leading to heart damage and its prevention are largely unknown. Methodology/Principal Findings Using a guinea pig model, here we show that chronic exposure to CS produces myocardial injury that is prevented by vitamin C. Male guinea pigs were fed either vitamin C-deficient (0.5 mg/day) or vitamin C-sufficient (15 mg/day) diet and subjected to CS exposure from 5 Kentucky Research cigarettes (3R4F)/day (6 days/week) in a smoke chamber up to 8 weeks. Pair-fed sham controls were subjected to air exposure instead of CS exposure under similar conditions. Myocardial injury was produced in CS-exposed marginal vitamin C-deficient guinea pigs as evidenced by release of cardiac Troponin-T and I in the serum, oxidative stress, inflammation, apoptosis, thrombosis and collagen deposition in the myocardium. Treatment of rat cardiomyocyte cells (H9c2) in vitro and guinea pigs in vivo with p-benzoquinone (p-BQ) in amounts derived from CS revealed that p-BQ was a major factor responsible for CS-induced myocardial damage. A moderately large dose of vitamin C (15 mg/day) prevented CS/p-BQ-induced myocardial injury. Population based studies indicated that plasma vitamin C levels of smokers without disease were significantly lower (p = 0,0000) than that of non-smokers. Vitamin C levels of CS-related cardiovascular patients were further lower (p = 0.0000) than that of smokers without disease. Conclusions/Significance The results indicate that dietary supplementation of vitamin C may be a novel and simple therapy for the prevention of pathological cardiovascular events in habitual smokers.
Free Radical Research | 1996
Mrinal K. Ghosh; Dhruba J. Chattopadhyay; Indu B. Chatterjee
Ascorbate-deficiency leads to extensive oxidative damage of proteins and protein loss in the guinea pig tissue microsomes as evidenced by sodium dodecyl sulfate polyacrylamide gel electrophoresis, accumulation of carbonyl, bityrosine as well as by tryptophan loss. Oxidative damage is reversed by ascorbate therapy. Oxidative damage in ascorbate deficiency also leads to lipid peroxidation in guinea pig tissue microsomes as evidenced by accumulation of conjugated dienes, malondialdehyde and fluorescent pigment. Lipid peroxides, disappear after ascorbate therapy but not by vitamin E. The observations substantiate the previous in vitro findings that ascorbate specifically prevents oxidative degradation of microsomal membranes. The results indicate that vitamin C may exert a powerful protection against degenerative diseases associated with oxidative damage and play a critical role in wellness and health maintenance.
Toxicology | 2012
Arunava Ghosh; Aparajita Choudhury; Archita Das; Nabendu Sekhar Chatterjee; Tanusree Das; Rukhsana Chowdhury; Koustubh Panda; Rajat Banerjee; Indu B. Chatterjee
Earlier we had reported that irrespective of the source cigarette smoke (CS) contains substantial amounts of p-benzosemiquinone, which is readily converted to p-benzoquinone (p-BQ) by disproportionation and oxidation by transition metal containing proteins. Here we show that after CS-exposure, p-BQ-protein adducts are formed in the lungs as well as serum albumin of guinea pigs. We also show that serum of human smokers contains p-BQ-albumin adduct. It is known that human serum albumin (HSA) plays a very important role in binding and transport of a variety of ligands, including fatty acids and drugs. We show in vitro that p-BQ forms covalent adducts with free amino groups of all twenty amino acids as well as ɛ-amino groups of lysine residues of HSA in a concentration dependent manner. When HSA is incubated with p-BQ in the molar ratio of 1:1, the number of p-BQ incorporated is 1. At the molar ratio of 1:60, the number of p-BQ incorporated is 40. The formation of HSA-p-BQ adduct has been demonstrated by absorption spectroscopy, MALDI-MS and MALDI-TOF-TOF-MS analyses. Upon complexation with p-BQ, the secondary structure and conformation of HSA are altered, as evidenced by steady state and time-resolved fluorescence, circular dichroism, 8-anilino-1-napthalenesulfonic acid binding and differential scanning calorimetry. Alteration of the structure and conformation of HSA results in impairment of its ligand binding properties with respect to myristic acid, quercitin and paracetamol. This might be one of the reasons why transport and distribution of lipids and drugs are impaired in smokers.
Journal of Biosciences | 2010
Neekkan Dey; Archita Das; Arunava Ghosh; Indu B. Chatterjee
In this paper, we have made a comparative evaluation of the cytotoxicity and pathophysiological effects of mainstream smoke from cellulose acetate (CA)-filtered cigarettes with that of charcoal-filtered cigarettes developed in our laboratory. Previously, we had demonstrated that the mainstream smoke from an Indian CA-filtered commercial cigarette contains p-benzosemiquinone (p-BSQ), a major, highly toxic, long-lived water-soluble radical. Here, we have examined 16 brands of different CA-filtered cigarettes including Kentucky research cigarettes, and observed that mainstream smoke from all the cigarettes contains substantial amounts of p-BSQ (100–200 µg/cigarette). We also show that when the CA filter is replaced by a charcoal filter, the amount of p-BSQ in the mainstream smoke is reduced by 73–80%, which is accompanied by a reduction of carbonyl formation in bovine serum albumin to the extent of 70–90%. The charcoal filter also prevented cytotoxicity in A549 cells as evidenced by MTT assay, apoptosis as evidenced by FACS analysis, TUNEL assay, overexpression of Bax, activation of p53 and caspase 3, as well as emphysematous lung damage in a guinea pig model as seen by histology and morphometric analysis. The results indicate that the charcoal filter developed in our laboratory may protect smokers from cigarette smoke-induced cytotoxity, protein modification, apoptosis and emphysema.