Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Indu Bala Jaganath is active.

Publication


Featured researches published by Indu Bala Jaganath.


Natural Product Reports | 2009

Dietary phenolics: chemistry, bioavailability and effects on health

Alan Crozier; Indu Bala Jaganath; Michael N. Clifford

There is much epidemiological evidence that diets rich in fruit and vegetables can reduce the incidence of non-communicable diseases such as cardiovascular diseases, diabetes, cancer and stroke. These protective effects are attributed, in part, to phenolic secondary metabolites. This review summarizes the chemistry, biosynthesis and occurrence of the compounds involved, namely the C6-C3-C6 flavonoids-anthocyanins, dihydrochalcones, flavan-3-ols, flavanones, flavones, flavonols and isoflavones. It also includes tannins, phenolic acids, hydroxycinnamates and stilbenes and the transformation of plant phenols associated with food processing (for example, production of black tea, roasted coffee and matured wines), these latter often being the major dietary sources. Events that occur following ingestion are discussed, in particular, the deglycosylation, glucuronidation, sulfation and methylation steps that occur at various points during passage through the wall of the small intestine into the circulatory system and subsequent transport to the liver in the portal vein.We also summarise the fate of compounds that are not absorbed in the small intestine, but which pass into the large intestine where they are degraded by the colonic microflora to phenolic acids, which can be absorbed into the circulatory system and subjected to phase II metabolism prior to excretion. Initially, the protective effect of dietary phenolics was thought to be due to their antioxidant properties which resulted in a lowering of the levels of free radicals within the body.However, there is now emerging evidence that themetabolites of dietary phenolics,which appear in the circulatory systemin nmol/L to low mmol/L concentrations, exertmodulatory effects in cells through selective actions on different components of the intracellular signalling cascades vital for cellular functions such as growth, proliferation and apoptosis. In addition, the intracellular concentrations required to affect cell signalling pathways are considerably lower than those required to impact on antioxidant capacity. The mechanisms underlying these processes are discussed.


Free Radical Research | 2006

The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man

Indu Bala Jaganath; William Mullen; Christine A. Edwards; Alan Crozier

Tomato juice containing rutin (quercetin-3-rutinoside) was ingested by healthy volunteers and ileostomists. Blood and urine collected over 24 h were analysed by HPLC with photodiode array (PDA) and tandem mass spectrometric detection. Low concentrations of isorhamnetin-3-glucuronide (Cmax = 4.3 ± 1.5 nmoles/l) and quercetin-3-glucuronide (Cmax = 12 ± 2 nmoles/l) were detected in plasma of healthy subjects. Metabolites appeared in blood after 4 h indicating absorption from the large intestine. Nine metabolites of rutin were detected in urine but with considerable variation in total amount (40 ± 1–4981 ± 115 nmoles over 24 h). No metabolites were detected in plasma or urine of ileostomists and 86 ± 3% of the ingested rutin was recovered in ileal fluid. In subjects with an intact large intestine, but not ileostomists, rutin was catabolised with the appearance of 3,4-dihydroxyphenylacetic acid, 3-methoxy-4-hydroxyphenylacetic acid and 3-hydroxyphenylacetic acid in urine accounting for 22% of rutin intake.


Free Radical Biology and Medicine | 2009

In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites.

Indu Bala Jaganath; William Mullen; Michael E. J. Lean; Christine A. Edwards; Alan Crozier

The role of colonic microflora in the breakdown of quercetin-3-O-rutinoside (rutin) was investigated. An in vitro fermentation model was used and (i) 28 micromol of rutin and (ii) 55 micromol of quercetin plus 18 x 10(6) dpm of [4-(14)C]quercetin (60 nmol) were incubated with fresh fecal samples from three human volunteers, in the presence and absence of glucose. The accumulation of quercetin during in vitro fermentation demonstrated that deglycosylation is the initial step in the breakdown of rutin. The subsequent degradation of quercetin was dependent upon the interindividual composition of the bacterial microflora and was directed predominantly toward the production of either hydroxyphenylacetic acid derivatives or hydroxybenzoic acids. Possible catabolic pathways for these conversions are proposed. The presence of glucose as a carbon source stimulated the growth and production of bacterial microflora responsible for both the deglycosylation of rutin and the catabolism of quercetin. 3,4-Dihydroxyphenylacetic acid accumulated in large amounts in the fecal samples and was found to possess significant reducing power and free radical scavenging activity. This catabolite may play a key role in the overall antioxidant capacity of the colonic lumen after the ingestion of quercetin-rich foods.


PLOS ONE | 2011

Antimetastatic effects of Phyllanthus on human lung (A549) and breast (MCF-7) cancer cell lines.

Sau Har Lee; Indu Bala Jaganath; Seok Mui Wang; Shamala Devi Sekaran

Background Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells. Methodology/Principal Findings Cytotoxicity of Phyllanthus plant extracts were first screened using the MTS reduction assay. They were shown to inhibit MCF-7 (breast carcinoma) and A549 (lung carcinoma) cells growth with IC50 values ranging from 50–180 µg/ml and 65–470 µg/ml for methanolic and aqueous extracts respectively. In comparison, they have lower toxicity on normal cells with the cell viability percentage remaining above 50% when treated up to 1000 µg/ml for both extracts. After determining the non-toxic effective dose, several antimetastasis assays were carried out and Phyllanthus extracts were shown to effectively reduce invasion, migration, and adhesion of both MCF-7 and A549 cells in a dose-dependent manner, at concentrations ranging from 20–200 µg/ml for methanolic extracts and 50–500 µg/ml for aqueous extracts. This was followed by an evaluation of the possible modes of cell death that occurred along with the antimetastatic activity. Phyllanthus was shown to be capable of inducing apoptosis in conjunction with its antimetastastic action, with more than three fold increase of caspases-3 and -7, the presence of DNA-fragmentation and TUNEL-positive cells. The ability of Phyllanthus to exert antimetastatic activities is mostly associated to the presence of polyphenol compounds in its extracts. Conclusions/Significance The presence of polyphenol compounds in the Phyllanthus plant is critically important in the inhibition of the invasion, migration, and adhesion of cancer cells, along with the involvement of apoptosis induction. Hence, Phyllanthus could be a valuable candidate in the treatment of metastatic cancers.


PLOS ONE | 2010

Phyllanthus spp. induces selective growth inhibition of PC-3 and MeWo human cancer cells through modulation of cell cycle and induction of apoptosis

Yin-Quan Tang; Indu Bala Jaganath; Shamala Devi Sekaran

Background Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii) against skin melanoma and prostate cancer cells. Methodology/Principal Findings Phyllanthus plant appears to possess cytotoxic properties with half-maximal inhibitory concentration (IC50) values of 150–300 µg/ml for aqueous extract and 50–150 µg/ml for methanolic extract that were determined using the MTS reduction assay. In comparison, the plant extracts did not show any significant cytotoxicity on normal human skin (CCD-1127Sk) and prostate (RWPE-1) cells. The extracts appeared to act by causing the formation of a clear “ladder” fragmentation of apoptotic DNA on agarose gel, displayed TUNEL-positive cells with an elevation of caspase-3 and -7 activities. The Lactate Dehydrogenase (LDH) level was lower than 15% in Phyllanthus treated-cancer cells. These indicate that Phyllanthus extracts have the ability to induce apoptosis with minimal necrotic effects. Furthermore, cell cycle analysis revealed that Phyllanthus induced a Go/G1-phase arrest on PC-3 cells and a S-phase arrest on MeWo cells and these were accompanied by accumulation of cells in the Sub-G1 (apoptosis) phase. The cytotoxic properties may be due to the presence of polyphenol compounds such as ellagitannins, gallotannins, flavonoids and phenolic acids found both in the water and methanol extract of the plants. Conclusions/Significance Phyllanthus plant exerts its growth inhibition effect in a selective manner towards cancer cells through the modulation of cell cycle and induction of apoptosis via caspases activation in melanoma and prostate cancer cells. Hence, Phyllanthus may be sourced for the development of a potent apoptosis-inducing anticancer agent.


International Journal of Medical Sciences | 2013

Evaluation of Antiviral Activities of Four Local Malaysian Phyllanthus Species against Herpes Simplex Viruses and Possible Antiviral Target

Wee Chee Tan; Indu Bala Jaganath; Rishya Manikam; Shamala Devi Sekaran

Nucleoside analogues such as acyclovir are effective antiviral drugs against herpes simplex virus infections since its introduction. However, with the emergence of acyclovir-resistant HSV strains particularly in immunocompromised patients, there is a need to develop an alternative antiherpetic drug and plants could be the potential lead. In this study, the antiviral activity of the aqueous extract of four Phyllanthus species were evaluated against herpes simplex virus type-1 (HSV-1) and HSV-2 in Vero cells by quantitative PCR. The protein expressions of untreated and treated infected Vero cells were studied by 2D-gel electrophoresis and Western blot. This is the first study that reported the antiviral activity of P. watsonii. P. urinaria was shown to demonstrate the strongest antiviral activity against HSV-1 and HSV-2, with SI >33.6. Time-of-addition studies suggested that the extract may act against the early infection stage and the replication stage. Protein expression studies indicated that cellular proteins that are involved in maintaining cytoskeletal structure could be potential target for development of antiviral drugs. Preliminary findings indicated that P. urinaria demonstrated potent inhibitory activity against HSV. Hence, further studies such as in vivo evaluation are required for the development of effective antiherpetic drug.


BMC Complementary and Alternative Medicine | 2013

Inhibition of Raf-MEK-ERK and Hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line

Sau Har Lee; Indu Bala Jaganath; Rishya Manikam; Shamala Devi Sekaran

BackgroundLung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities.MethodsCancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus.ResultsPhyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity.ConclusionsPhyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549 invasion and migration.


International Journal of Molecular Sciences | 2010

Erwinia mallotivora sp., a New Pathogen of Papaya (Carica papaya) in Peninsular Malaysia

Noriha Mat Amin; Hamidun Bunawan; Rohaiza Ahmad Redzuan; Indu Bala Jaganath

Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414). Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch’s postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya.


International Journal of Medical Sciences | 2014

Inhibition of MAPKs, Myc/Max, NFκB, and hypoxia pathways by Phyllanthus prevents proliferation, metastasis and angiogenesis in human melanoma (MeWo) cancer cell line.

Yin-Quan Tang; Indu Bala Jaganath; Rishya Manikam; Shamala Devi Sekaran

Background: Melanoma is the most fatal form of skin cancer. Different signalling pathways and proteins will be differentially expressed to pace with the tumour growth. Thus, these signalling molecules and proteins are become potential targets to halt the progression of cancer. The present works were attempted to investigate the underlying molecular mechanisms of anticancer effects of Phyllanthus (P.amarus, P.niruri, P.urinaria and P.watsonii) on skin melanoma, MeWo cells. Methods: The ten cancer-related pathways reporter array was performed by transfection of plasmid construct of transcription factor-responsive reporter of each pathway in MeWo cells. The affected pathways in MeWo cells after treatment of Phyllanthus extracts were determined using luciferase assay. Western blot, 2D gel electrophoresis and mass spectrometry analysis were performed to identity and confirm the affected proteins and signalling molecules in treated cells. Results: The ten-pathway reporter array revealed five different cancer-related signalling pathways were altered by Phyllanthus species in MeWo cells; NFκB, Myc/Max, Hypoxia, MAPK/ERK and MAPK/JNK (p<0.05). Western blot revealed that their intracellular signalling molecules including pan-Ras, c-Raf, RSK, phospho-Elk1, c-myc, Akt, HIF-1α, Bcl-2, and VEGF were down-regulated with concurrent of up-regulation; Bax, phospho-JNK-1/2 and phospho-GSK3β, in MeWo cells upon Phyllanthus treatment (p<0.05). Proteomics-based approach was performed and MS/MS results revealed that 52 differential expressed proteins were identified (p<0.05) and involved in tumour growth, metastasis, apoptosis, glycogenesis and glycolysis, angiogenesis, protein synthesis and energy metabolism. Conclusion: This study provides insight into the regulation on multiple survival signalling pathways by Phyllanthus in melanoma and might be a therapeutic target for cancer treatment.


Evidence-based Complementary and Alternative Medicine | 2015

In Vivo Antioxidant and Hypolipidemic Effects of Fermented Mung Bean on Hypercholesterolemic Mice

Swee Keong Yeap; Boon Kee Beh; Wan Yong Ho; Hamidah Mohd Yusof; Nurul Elyani Mohamad; Norlaily Mohd Ali; Indu Bala Jaganath; Noorjahan Banu Alitheen; Soo Peng Koh; Kamariah Long

Legumes have previously been reported with hypolipidemic effect caused by the presence of flavonoid. This study was carried out to evaluate the antioxidant and hypolipidemic effects of fermented mung bean on hypercholesterolemic mice. Blood from all mice was collected and subjected to serum lipid and liver profiles biochemical analysis and quantitative RT-PCR for atherosclerosis related gene expressions. Besides, livers were collected for antioxidant assays and histopathology evaluation. Fermented mung bean was found to reduce the level of serum lipid and liver enzyme profiles of hypercholesterolemic mice. Furthermore, liver antioxidant and nitric oxide levels were also significantly restored by fermented mung bean in a dosage dependent manner. The gene expression study indicated that Apoe and Bcl2a1a were upregulated while Npy and Vwf expressions were downregulated after the treatment. The effects of fermented mung bean were greater than nonfermented mung bean. These results indicated that fermented mung bean possessed antioxidants that lead to its hypolipidemic effect on hypercholesterolemic mice.

Collaboration


Dive into the Indu Bala Jaganath's collaboration.

Top Co-Authors

Avatar

Alan Crozier

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kamariah Long

Malaysian Agricultural Research and Development Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wan Yong Ho

University of Nottingham Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar

Anisah Jamaluddin

Malaysian Agricultural Research and Development Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge