Ine Van Nieuwenhove
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ine Van Nieuwenhove.
Materials | 2014
Achim Salamon; Sandra Van Vlierberghe; Ine Van Nieuwenhove; Frank Baudisch; Geert-Jan Graulus; Verena Benecke; Kristin Alberti; Hans-Georg Neumann; Joachim Rychly; José Martins; Peter Dubruel; Kirsten Peters
Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.
Carbohydrate Polymers | 2016
Ine Van Nieuwenhove; Achim Salamon; Kirsten Peters; Geert-Jan Graulus; José Martins; Daniel Frankel; Ken Kersemans; Filip De Vos; Sandra Van Vlierberghe; Peter Dubruel
The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering approaches.
Biomacromolecules | 2016
Elke Van De Walle; Ine Van Nieuwenhove; Els Vanderleyden; Heidi Declercq; Karolien Gellynck; David Schaubroeck; Heidi Ottevaere; Hugo Thienpont; Winnok H. De Vos; Maria Cornelissen; Sandra Van Vlierberghe; Peter Dubruel
Despite its widespread application in the fields of ophthalmology, orthopedics, and dentistry and the stringent need for polymer packagings that induce in vivo tissue integration, the full potential of poly(methyl methacrylate) (PMMA) and its derivatives as medical device packaging material has not been explored yet. We therefore elaborated on the development of a universal coating for methacrylate-based materials that ideally should reveal cell-interactivity irrespective of the polymer substrate bulk properties. Within this perspective, the present work reports on the UV-induced synthesis of PMMA and its more flexible poly(ethylene glycol) (PEG)-based derivative (PMMAPEG) and its subsequent surface decoration using polydopamine (PDA) as well as PDA combined with gelatin B (Gel B). Successful application of both layers was confirmed by multiple surface characterization techniques. The cell interactivity of the materials was studied by performing live-dead assays and immunostainings of the cytoskeletal components of fibroblasts. It can be concluded that only the combination of PDA and Gel B yields materials possessing similar cell interactivities, irrespective of the physicochemical properties of the underlying substrate. The proposed coating outperforms both the PDA functionalized and the pristine polymer surfaces. A universal cell-interactive coating for methacrylate-based medical device packaging materials has thus been realized.
Journal of Materials Science: Materials in Medicine | 2015
Ine Van Nieuwenhove; Sandra Van Vlierberghe; Achim Salamon; Kirsten Peters; Hugo Thienpont; Peter Dubruel
The present work focuses on the development of biomaterials that support the adhesion and the proliferation of adipose-tissue derived stem cells. Therefore, gelatin and starch are selected as starting materials. Both hydrogel building blocks are of great interest as they provide a general chemical structure comparable to the protein and the polysaccharide constituting part of the extracellular matrix. Crosslinkable side groups are incorporated on both biopolymers to enable the subsequent chemical crosslinking, thereby ensuring their stability at physiological temperature. An in vitro cellular assay revealed that the hydrogels developed are biocompatible and supported cell adhesion of adipose-tissue derived mesenchymal stem cells. The presence of the starch phase tempered the adhesion resulting in local cell detachment. The results thus indicate that by carefully varying the ratio of the two building blocks, hydrogels can be developed possessing a controllable cell adhesion behavior.Graphical Abstract
Macromolecular Rapid Communications | 2014
Ine Van Nieuwenhove; Birgit Stubbe; Geert-Jan Graulus; Sandra Van Vlierberghe; Peter Dubruel
The protection of primary amines available in proteins holds great potential to introduce a plethora of diverse functionalities along the protein backbone (e.g., via its carboxylic acid or alcohol moieties) while circumventing the crosslinking issue using conventional approaches. This paper reports on a straightforward and efficient proof-of-concept including the chemoselective N-tert-butyloxycarbonylation of the primary amines in the protein gelatin (gel-NH-BOC), followed by introducing crosslinkable methacrylamide moieties. The reaction is performed successfully under relatively mild conditions (50 °C). Following selective protein functionalization, the deprotection is realized by adding a catalytic amount of an aqueous hydrogen chloride solution. The present communication illustrates the occurrence of a straightforward and selective deprotection procedure, which is typically required to circumvent the occurrence of acidic hydrolysis of the protein backbone. The results hold promise for a large range of biomedical applications in which the presence of primary amines is essential for preserving the biological activity.
Polymer Chemistry | 2017
Ine Van Nieuwenhove; Samarendra Maji; Mamoni Dash; Sandra Van Vlierberghe; Richard Hoogenboom; Peter Dubruel
The present paper demonstrates the successful RAFT/MADIX polymerization of N-vinylcaprolactam at ambient temperature in water–ethanol mixtures. It was observed that the monomer conversion increased with increasing v% of water present in the solvent due to an improved polymer solvation. Simultaneously the monomer hydrolysis also increased with increasing water content and a 1 : 1 ratio of water and ethanol was found as optimum regarding both polymerization rate and insignificant hydrolysis. In future, the application of these low toxicity solvent mixtures of ethanol and water can be applied to enable new avenues towards bioconjugation.
Journal of Materials Science: Materials in Medicine | 2017
Elke Van De Walle; Ine Van Nieuwenhove; Winnok H. De Vos; Heidi Declercq; Peter Dubruel; Sandra Van Vlierberghe
The present work reports on the development of a range of poly(methyl methacrylate)/poly(ethylene glycol) (PMMAPEG)-based materials, characterized by different elasticity moduli in order to study the influence of the substrate’s mechanical properties on the response of human umbilical vein endothelial cells (HUVECs). To render the selected materials cell-interactive, a polydopamine (PDA)/gelatin type B (Gel B) coating was applied. Prior to the in vitro assay, the success of the PDA and Gel B immobilization onto the materials was confirmed using X-ray photoelectron spectroscopy (XPS) as reflected by the nitrogen percentages measured for the materials after PDA and Gel B deposition. Tensile tests showed that materials with E-moduli ranging from 37 to 1542 MPa could be obtained by varying the ratio between PMMA and PEG as well as the PEG molecular weight and its functionality (i.e. mono-methacrylate vs. di-methacrylate). The results after 1 day of cell contact suggested a preferred HUVECs cell growth onto more rigid materials. After 1 week, the material with the lowest E-modulus of 37 MPa showed lower cell densities compared to the other materials. No clear correlation could be observed between the number of focal adhesion points and the substrate stiffness. Although minor differences were found, these were not statistically significant. This last conclusion again highlights the universal character of the PDA/Gel B modification. The present work could thus be valuable for the development of a range of cell substrates requiring different mechanical properties in line with the envisaged application while the cell response should ideally remain unaffected.Graphical abstract
International Journal of Artificial Organs | 2015
Ine Van Nieuwenhove; Sandra Van Vlierberghe; Achim Salamon; Kirsten Peters; Peter Dubruel
Abstracts from the XLII Congress of the European Society for Artificial Organs, 2-5 September 2015, Leuven, Belgium.
Carbohydrate Polymers | 2017
Ine Van Nieuwenhove; Achim Salamon; Stefanie Adam; Peter Dubruel; Sandra Van Vlierberghe; Kirsten Peters
Warwick Polymer conference, Abstracts | 2016
Ine Van Nieuwenhove; Samarendra Maji; Richard Hoogenboom; Sandra Van Vlierberghe; Peter Dubruel