Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inês A. C. Pereira is active.

Publication


Featured researches published by Inês A. C. Pereira.


FEMS Microbiology Ecology | 2002

Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases

Julien Loubinoux; Jean-Pierre Bronowicki; Inês A. C. Pereira; Jean-Louis Mougenel; Alain Le Faou

We have searched for sulfate-reducing bacteria in the feces of 41 healthy individuals and 110 patients from a Hepato-Gastro-Enterology Unit using a specific liquid medium (Test-kit Labège, Compagnie Française de Géothermie, Orléans, France). The 110 patients were separated in 22 patients presenting with inflammatory bowel diseases and 88 patients hospitalized for other lower (n=30) or upper (n=58) digestive tract diseases. Sulfate-reducing bacteria were isolated from 10 healthy individuals (24%), 15 patients presenting with inflammatory bowel diseases (68%), and 33 patients with other symptoms (37%). A multiplex PCR was devised for the identification of Desulfovibrio piger (formerly Desulfomonas pigra), Desulfovibrio fairfieldensis and Desulfovibrio desulfuricans, and applied to the above isolates. The strains of sulfate-reducing bacteria consisted of D. piger (39 isolates), D. fairfieldensis (19 isolates) and D. desulfuricans (one isolate). The prevalence of D. piger was significantly higher in inflammatory bowel disease patients (55%) as compared to healthy individuals (12%) or patients with other symptoms (25%) (P<0.05).


Philosophical Transactions of the Royal Society B | 2013

Early bioenergetic evolution

Filipa L. Sousa; Thorsten Thiergart; Giddy Landan; Shijulal Nelson-Sathi; Inês A. C. Pereira; John F. Allen; Nick Lane; William Martin

Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution.


Environmental Microbiology | 2012

The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation

Amy V. Callaghan; B.E.L. Morris; Inês A. C. Pereira; Michael J. McInerney; Rachel N. Austin; John T. Groves; J.J. Kukor; Joseph M. Suflita; Lily Y. Young; Gerben J. Zylstra; Boris Wawrik

Desulfatibacillum alkenivorans AK-01 serves as a model organism for anaerobic alkane biodegradation because of its distinctive biochemistry and metabolic versatility. The D. alkenivorans genome provides a blueprint for understanding the genetic systems involved in alkane metabolism including substrate activation, CoA ligation, carbon-skeleton rearrangement and decarboxylation. Genomic analysis suggested a route to regenerate the fumarate needed for alkane activation via methylmalonyl-CoA and predicted the capability for syntrophic alkane metabolism, which was experimentally verified. Pathways involved in the oxidation of alkanes, alcohols, organic acids and n-saturated fatty acids coupled to sulfate reduction and the ability to grow chemolithoautotrophically were predicted. A complement of genes for motility and oxygen detoxification suggests that D. alkenivorans may be physiologically adapted to a wide range of environmental conditions. The D. alkenivorans genome serves as a platform for further study of anaerobic, hydrocarbon-oxidizing microorganisms and their roles in bioremediation, energy recovery and global carbon cycling.


Journal of Biological Chemistry | 2008

The Crystal Structure of Desulfovibrio vulgaris Dissimilatory Sulfite Reductase Bound to DsrC Provides Novel Insights into the Mechanism of Sulfate Respiration

Tânia F. Oliveira; Clemens Vonrhein; Pedro M. Matias; Sofia S. Venceslau; Inês A. C. Pereira; Margarida Archer

Sulfate reduction is one of the earliest types of energy metabolism used by ancestral organisms to sustain life. Despite extensive studies, many questions remain about the way respiratory sulfate reduction is associated with energy conservation. A crucial enzyme in this process is the dissimilatory sulfite reductase (dSiR), which contains a unique siroheme-[4Fe4S] coupled cofactor. Here, we report the structure of desulfoviridin from Desulfovibrio vulgaris, in which the dSiR DsrAB (sulfite reductase) subunits are bound to the DsrC protein. The α2β2γ2 assembly contains two siroheme-[4Fe4S] cofactors bound by DsrB, two sirohydrochlorins and two [4Fe4S] centers bound by DsrA, and another four [4Fe4S] centers in the ferredoxin domains. A sulfite molecule, coordinating the siroheme, is found at the active site. The DsrC protein is bound in a cleft between DsrA and DsrB with its conserved C-terminal cysteine reaching the distal side of the siroheme. We propose a novel mechanism for the process of sulfite reduction involving DsrAB, DsrC, and the DsrMKJOP membrane complex (a membrane complex with putative disulfide/thiol reductase activity), in which two of the six electrons for reduction of sulfite derive from the membrane quinone pool. These results show that DsrC is involved in sulfite reduction, which changes the mechanism of sulfate respiration. This has important implications for models used to date ancient sulfur metabolism based on sulfur isotope fractionations.


The EMBO Journal | 2006

X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination

Maria Luisa Rodrigues; Tânia F. Oliveira; Inês A. C. Pereira; Margarida Archer

Oxidation of membrane‐bound quinol molecules is a central step in the respiratory electron transport chains used by biological cells to generate ATP by oxidative phosphorylation. A novel family of cytochrome c quinol dehydrogenases that play an important role in bacterial respiratory chains was recognised in recent years. Here, we describe the first structure of a cytochrome from this family, NrfH from Desulfovibrio vulgaris, which forms a stable complex with its electron partner, the cytochrome c nitrite reductase NrfA. One NrfH molecule interacts with one NrfA dimer in an asymmetrical manner, forming a large membrane‐bound complex with an overall α4β2 quaternary arrangement. The menaquinol‐interacting NrfH haem is pentacoordinated, bound by a methionine from the CXXCHXM sequence, with an aspartate residue occupying the distal position. The NrfH haem that transfers electrons to NrfA has a lysine residue from the closest NrfA molecule as distal ligand. A likely menaquinol binding site, containing several conserved and essential residues, is identified.


Biochimica et Biophysica Acta | 2003

A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774.

Ricardo H. Pires; Alexandra Lourenço; Francisco Morais; Miguel Teixeira; António V. Xavier; Lígia M. Saraiva; Inês A. C. Pereira

In the anaerobic respiration of sulfate, performed by sulfate-reducing prokaryotes, reduction of the terminal electron acceptor takes place in the cytoplasm. The membrane-associated electron transport chain that feeds electrons to the cytoplasmic reductases is still very poorly characterized. In this study we report the isolation and characterization of a novel membrane-bound redox complex from Desulfovibrio desulfuricans ATCC 27774. This complex is formed by three subunits, and contains two hemes b, two FAD groups and several iron-sulfur centers. The two hemes b are low-spin, with macroscopic redox potentials of +75 and -20 mV at pH 7.6. Both hemes are reduced by menadiol, a menaquinone analogue, indicating a function for this complex in the respiratory electron-transport chain. EPR studies of the as-isolated and dithionite-reduced complex support the presence of a [3Fe-4S](1+/0) center and at least four [4Fe-4S](2+/1+) centers. Cloning of the genes coding for the complex subunits revealed that they form a putative transcription unit and have homology to subunits of heterodisulfide reductases (Hdr). The first and second genes code for soluble proteins that have homology to HdrA, whereas the third gene codes for a novel type of membrane-associated protein that contains both a hydrophobic domain with homology to the heme b protein HdrE and a hydrophilic domain with homology to the iron-sulfur protein HdrC. Homologous operons are found in the genomes of other sulfate-reducing organisms and in the genome of the green-sulfur bacterium Chlorobium tepidum TLS. The isolated complex is the first example of a new family of respiratory complexes present in anaerobic prokaryotes.


Journal of Biological Inorganic Chemistry | 1998

Electron transfer between hydrogenases and mono- and multiheme cytochromes in Desulfovibrio ssp

Inês A. C. Pereira; Célia V. Romão; António V. Xavier; Jean LeGall; Miguel Teixeira

Abstract A comparative study of electron transfer between the 16 heme high molecular mass cytochrome (Hmc) from Desulfovibrio vulgaris Hildenborough and the [Fe] and [NiFe] hydrogenases from the same organism was carried out, both in the presence and in the absence of catalytic amounts of cytochrome c3. For comparison, this study was repeated with the [NiFe] hydrogenase from D. gigas. Hmc is very slowly reduced by the [Fe] hydrogenase, but faster by either of the two [NiFe] hydrogenases. In the presence of cytochrome c3, in equimolar amounts to the hydrogenases, the rates of electron transfer are significantly increased and are similar for the three hydrogenases. The results obtained indicate that the reduction of Hmc by the [Fe] or [NiFe] hydrogenases is most likely mediated by cytochrome c3. A similar study with D. vulgaris Hildenborough cytochrome c553 shows that, in contrast, this cytochrome is reduced faster by the [Fe] hydrogenase than by the [NiFe] hydrogenases. However, although catalytic amounts of cytochrome c3 have no effect in the reduction by the [Fe] hydrogenase, it significantly increases the rate of reduction by the [NiFe] hydrogenases.


Journal of Biological Inorganic Chemistry | 2005

Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase

Filipa M. A. Valente; A. Sofia F. Oliveira; Nicole Gnadt; Isabel Pacheco; Ana V. Coelho; António V. Xavier; Miguel Teixeira; Cláudio M. Soares; Inês A. C. Pereira

The genome of Desulfovibrio vulgaris Hildenborough (DvH) encodes for six hydrogenases (Hases), making it an interesting organism to study the role of these proteins in sulphate respiration. In this work we address the role of the [NiFeSe] Hase, found to be the major Hase associated with the cytoplasmic membrane. The purified enzyme displays interesting catalytic properties, such as a very high H2 production activity, which is dependent on the presence of phospholipids or detergent, and resistance to oxygen inactivation since it is isolated aerobically in a Ni(II) oxidation state. Evidence was obtained that the [NiFeSe] Hase is post-translationally modified to include a hydrophobic group bound to the N-terminal, which is responsible for its membrane association. Cleavage of this group originates a soluble, less active form of the enzyme. Sequence analysis shows that [NiFeSe] Hases from Desulfovibrionacae form a separate family from the [NiFe] enzymes of these organisms, and are more closely related to [NiFe] Hases from more distant bacterial species that have a medial [4Fe4S]2+/1+ cluster, but not a selenocysteine. The interaction of the [NiFeSe] Hase with periplasmic cytochromes was investigated and is similar to the [NiFe]1 Hase, with the Type I cytochrome c3 as the preferred electron acceptor. A model of the DvH [NiFeSe] Hase was generated based on the structure of the Desulfomicrobium baculatum enzyme. The structures of the two [NiFeSe] Hases are compared with the structures of [NiFe] Hases, to evaluate the consensual structural differences between the two families. Several conserved residues close to the redox centres were identified, which may be relevant to the higher activity displayed by [NiFeSe] Hases.


Journal of Biological Chemistry | 2010

The Qrc Membrane Complex, Related to the Alternative Complex III, Is a Menaquinone Reductase Involved in Sulfate Respiration

Sofia S. Venceslau; Rita R. Lino; Inês A. C. Pereira

Biological sulfate reduction is a process with high environmental significance due to its major contribution to the carbon and sulfur cycles in anaerobic environments. However, the respiratory chain of sulfate-reducing bacteria is still poorly understood. Here we describe a new respiratory complex that was isolated as a major protein present in the membranes of Desulfovibrio vulgaris Hildenborough. The complex, which was named Qrc, is the first representative of a new family of redox complexes. It has three subunits related to the complex iron-sulfur molybdoenzyme family and a multiheme cytochrome c and binds six hemes c, one [3Fe-4S]+1/0 cluster, and several interacting [4Fe-4S]2+/1+ clusters but no molybdenum. Qrc is related to the alternative complex III, and we show that it has the reverse catalytic activity, acting as a Type I cytochrome c3:menaquinone oxidoreductase. The qrc genes are found in the genomes of deltaproteobacterial sulfate reducers, which have periplasmic hydrogenases and formate dehydrogenases that lack a membrane subunit for reduction of the quinone pool. In these organisms, Qrc acts as a menaquinone reductase with electrons from periplasmic hydrogen or formate oxidation. Binding of a menaquinone analogue affects the EPR spectrum of the [3Fe-4S]+1/0 cluster, indicating the presence of a quinone-binding site close to the periplasmic subunits. Qrc is the first respiratory complex from sulfate reducers to have its physiological function clearly elucidated.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2008

Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

Patrícia M. Pereira; Qiang He; Filipa M. A. Valente; António V. Xavier; Jizhong Zhou; Inês A. C. Pereira; Ricardo O. Louro

Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe] hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energy metabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

Collaboration


Dive into the Inês A. C. Pereira's collaboration.

Top Co-Authors

Avatar

António V. Xavier

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marta C. Marques

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Antonio L. De Lacey

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Sofia S. Venceslau

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Filipa M. A. Valente

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Miguel Teixeira

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Sonia Zacarias

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Oscar Gutiérrez-Sanz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pedro M. Matias

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge