Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ines Barone is active.

Publication


Featured researches published by Ines Barone.


Clinical Cancer Research | 2010

Estrogen Receptor Mutations and Changes in Downstream Gene Expression and Signaling

Ines Barone; Lauren Brusco; Suzanne A. W. Fuqua

Estrogens play a crucial role in regulating the growth and differentiation of breast cancers, with approximately two thirds of all breast tumors expressing the estrogen receptor alpha (ERα). Therefore, therapeutic strategies directed at inhibiting the action of ERα by using anti-estrogens such as tamoxifen, or reducing estrogens levels by using aromatase inhibitors, such as letrozole, anastrozole, or exemestane, are the standard treatments offered to women with ERα-positive cancer. However, not all patients respond to endocrine therapies (termed de novo resistance), and a large number of patients who do respond will eventually develop disease progression or recurrence while on therapy (acquired resistance). Recently, variant forms of the receptor have been identified owing to alternative splicing or gene mutation. This article reviews these variant receptors and their clinical relevance in resistance to endocrine therapy, by addressing their molecular cross-talk with growth factor receptors and signaling components. Understanding the complexity of receptor-mediated signaling has promise for new combined therapeutic options that focus on more efficient blockade of receptor cross-talk. Clin Cancer Res; 16(10); 2702–8. ©2010 AACR.


Cancer Research | 2007

Evidences that Leptin Up-regulates E-Cadherin Expression in Breast Cancer: Effects on Tumor Growth and Progression

Loredana Mauro; Stefania Catalano; Gianluca Bossi; Michele Pellegrino; Ines Barone; Sara Morales; Cinzia Giordano; Viviana Bartella; Ivan Casaburi; Sebastiano Andò

Leptin, a cytokine mainly produced by adipocytes, seems to play a crucial role in mammary carcinogenesis. In the present study, we explored the mechanism of leptin-mediated promotion of breast tumor growth using xenograft MCF-7 in 45-day-old female nude mice, and an in vitro model represented by MCF-7 three-dimensional cultures. Xenograft tumors, obtained only in animals with estradiol (E(2)) pellet implants, doubled control value after 13 weeks of leptin exposure. In three-dimensional cultures, leptin and/or E(2) enhanced cell-cell adhesion. This increased aggregation seems to be dependent on E-cadherin because it was completely abrogated in the presence of function-blocking E-cadherin antibody or EGTA, a calcium-chelating agent. In three-dimensional cultures, leptin and/or E(2) treatment significantly increased cell growth, which was abrogated when E-cadherin function was blocked. These findings well correlated with an increase of mRNA and protein content of E-cadherin in three-dimensional cultures and in xenografts. In MCF-7 cells both hormones were able to activate E-cadherin promoter. Mutagenesis studies, electrophoretic mobility shift assay, and chromatin immunoprecipitation assays revealed that cyclic AMP-responsive element binding protein and Sp1 motifs, present on E-cadherin promoter, were important for the up-regulatory effects induced by both hormones on E-cadherin expression in breast cancer MCF-7 cells. In conclusion, the present study shows how leptin is able to promote tumor cell proliferation and homotypic tumor cell adhesion via an increase of E-cadherin expression. This combined effect may give reasonable emphasis to the important role of this cytokine in stimulating primary breast tumor cell growth and progression, particularly in obese women.


Journal of Cellular Physiology | 2009

Evidence that leptin through STAT and CREB signaling enhances cyclin D1 expression and promotes human endometrial cancer proliferation.

Stefania Catalano; Cinzia Giordano; Pietro Rizza; Guowei Gu; Ines Barone; Daniela Bonofiglio; Francesca Giordano; Rocco Malivindi; Donatella Gaccione; Marilena Lanzino; Francesca De Amicis; Sebastiano Andò

Obesity is a risk factor for endometrial cancer in pre‐ and post‐menopausal women. Leptin, an adipocyte‐derived hormone, in addition to the control weight homeostasis, is implicated in multiple biological actions. A recent study demonstrated that leptin promotes endometrial cancer growth and invasiveness through STAT/MAPK and Akt pathways, but the molecular mechanism involved in such processes still needs to be elucidated. In an attempt to understand the role of leptin in regulating endometrial cancer cells proliferation, we have demonstrated that leptin treatment reduced the numbers of cells in G0/G1‐phase while increased cell population in S‐phase. This effect is associated with an up‐regulation of cyclin D1 together with a down‐regulation of cyclin‐dependent kinase inhibitor p21WAF1/Cip1. Mutagenesis studies, eletrophoretic mobility shift, and chromatin immunoprecipitation analysis revealed that signal transducers and activators of transcription 3 (STAT3) and cyclic AMP‐responsive element (CRE) binding protein motifs, within cyclin D1 promoter, were required for leptin‐induced cyclin D1 expression in Ishikawa endometrial cancer cells. Silencing of STAT3 and CREB gene expression by RNA interference reversed the up‐regulatory effect of leptin on cyclin D1 expression and cells proliferation. These results support the hypothesis that STAT3 and CREB play an important role in leptin signaling pathway that leads to the proliferation of Ishikawa cells, thus establishing a direct association between obesity and endometrial tumorogenesis. J. Cell. Physiol. 218: 490–500, 2009.


Journal of Cellular Physiology | 2013

Omega-3 PUFA ethanolamides DHEA and EPEA induce autophagy through PPARγ activation in MCF-7 breast cancer cells†‡§

Daniela Rovito; Cinzia Giordano; Donatella Vizza; Pierluigi Plastina; Ines Barone; Ivan Casaburi; Marilena Lanzino; Francesca De Amicis; Diego Sisci; Loredana Mauro; Saveria Aquila; Stefania Catalano; Daniela Bonofiglio; Sebastiano Andò

The omega‐3 long chain polyunsaturated fatty acids, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), elicit anti‐proliferative effects in cancer cell lines and in animal models. Dietary DHA and EPA can be converted to their ethanolamide derivatives, docosahexaenoyl ethanolamine (DHEA), and eicosapentaenoyl ethanolamine (EPEA), respectively; however, few studies are reported on their anti‐cancer activities. Here, we demonstrated that DHEA and EPEA were able to reduce cell viability in MCF‐7 breast cancer cells whereas they did not elicit any effects in MCF‐10A non‐tumorigenic breast epithelial cells. Since DHA and EPA are ligands of Peroxisome Proliferator‐Activated Receptor gamma (PPARγ), we sought to determine whether PPARγ may also mediate DHEA and EPEA actions. In MCF‐7 cells, both compounds enhanced PPARγ expression, stimulated a PPAR response element‐dependent transcription as confirmed by the increased expression of its target gene PTEN, resulting in the inhibition of AKT‐mTOR pathways. Besides, DHEA and EPEA treatment induced phosphorylation of Bcl‐2 promoting its dissociation from beclin‐1 which resulted in autophagy induction. We also observed an increase of beclin‐1 and microtubule‐associated protein 1 light chain 3 expression along with an enhanced autophagosomes formation as revealed by mono‐dansyl‐cadaverine staining. Finally, we demonstrated the involvement of PPARγ in DHEA‐ and EPEA‐induced autophagy by using siRNA technology and a selective inhibitor. In summary, our data show that the two omega‐3 ethanolamides exert anti‐proliferative effects by inducing autophagy in breast cancer cells highlighting their potential use as breast cancer preventive and/or therapeutic agents. J. Cell. Physiol. 228: 1314–1322, 2013.


Journal of Ethnopharmacology | 2012

Identification of bioactive constituents of Ziziphus jujube fruit extracts exerting antiproliferative and apoptotic effects in human breast cancer cells

Pierluigi Plastina; Daniela Bonofiglio; Donatella Vizza; Alessia Fazio; Daniela Rovito; Cinzia Giordano; Ines Barone; Stefania Catalano; Bartolo Gabriele

ETHNOPHARMACOLOGICAL RELEVANCE Ziziphus extracts have been used in Traditional Chinese Medicine for the treatment of cancer. AIM OF THE STUDY In the present study we have investigated the effects of Ziziphus jujube extracts (ZEs) on breast cancer. MATERIALS AND METHODS We evaluated the effects of increasing concentrations of ZEs on ERα positive MCF-7 and ERα negative SKBR3 breast cancer cell proliferation using MTT assays. Apoptosis was analyzed by evaluating the involvement of some pro-apoptotic proteins, including Bax, Bad, Bid and PARP cleavage by immunoblotting analysis. Moreover, the effects of ZEs treatment on apoptosis were tested by both DNA fragmentation and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. By using chromatographic techniques, we identified the constituents of the effective extracts. RESULTS ZE1, ZE2, and ZE4 exerted significant antiproliferative effects on estrogen receptor alpha (ERα) positive MCF-7 (IC(50) values of 14.42, 7.64, 1.69μg/mL) and ERα negative SKBR3 (IC(50) values of 14.06, 6.21, 3.70μg/mL) human breast cancer cells. Remarkably, ZEs did not affect cell viability of both normal human fibroblasts BJ1-hTERT and nonmalignant breast epithelial MCF-10A cells. Treatment with ZEs induced cell death by apoptosis in both malignant breast cells. We found that the most effective extracts ZE2 and ZE4 shared a number of triterpenic acids, already known for their anticancer activities. CONCLUSIONS Our data provide a rational base for the use of Ziziphus extracts in the treatment of breast cancer in Traditional Chinese Medicine.


Breast Cancer Research | 2014

Estrogen receptor beta as a novel target of androgen receptor action in breast cancer cell lines

Pietro Rizza; Ines Barone; Domenico Zito; Francesca Giordano; Marilena Lanzino; Francesca De Amicis; Loredana Mauro; Diego Sisci; Stefania Catalano; Karin Dahlman Wright; Jan Åke Gustafsson; Sebastiano Andò

IntroductionThe two isoforms of estrogen receptor (ER) alpha and beta play opposite roles in regulating proliferation and differentiation of breast cancers, with ER-alpha mediating mitogenic effects and ER-beta acting as a tumor suppressor. Emerging data have reported that androgen receptor (AR) activation inhibits ER-positive breast cancer progression mainly by antagonizing ER-alpha signaling. However, to date no studies have specifically evaluated a potential involvement of ER-beta in the inhibitory effects of androgens.MethodsER-beta expression was examined in human breast cancer cell lines using real-time PCR, Western blotting and small interfering RNA (siRNA) assays. Mutagenesis studies, electromobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis were performed to assess the effects of mibolerone/AR on ER-beta promoter activity and binding.ResultsIn this study, we demonstrate that mibolerone, a synthetic androgen ligand, up-regulates ER-beta mRNA and protein levels in ER-positive breast cancer cells. Transient transfection experiments, using a vector containing the human ER-beta promoter region, show that mibolerone increases basal ER-beta promoter activity. Site-directed mutagenesis and deletion analysis reveal that an androgen response element (ARE), TGTTCT motif located at positions −383 and −377, is critical for mibolerone-induced ER-beta up-regulation in breast cancer cells. This occurs through an increased recruitment of AR to the ARE site within the ER-beta promoter region, along with an enhanced occupancy of RNA polymerase II. Finally, silencing of ER-beta gene expression by RNA interference is able to partially reverse the effects of mibolerone on cell proliferation, p21 and cyclin D1 expression.ConclusionsCollectively, these data provide evidence for a novel mechanism by which activated AR, through an up-regulation of ER-beta gene expression, inhibits breast cancer cell growth.


Molecular Endocrinology | 2009

Rapid Estradiol/ERα Signaling Enhances Aromatase Enzymatic Activity in Breast Cancer Cells

Stefania Catalano; Ines Barone; Cinzia Giordano; Pietro Rizza; Hongyan Qi; Guowei Gu; Rocco Malivindi; Daniela Bonofiglio; Sebastiano Andò

In situ estrogen production by aromatase conversion from androgens plays an important role in breast tumor promotion. Here, we show that 17beta-estradiol (E2) can rapidly enhance aromatase enzymatic activity through an increase of aromatase protein phosphorylation in breast cancer cell lines. In vivo labeling experiments and site-directed mutagenesis studies demonstrated that phosphorylation of the 361-tyrosine residue is crucial in the up-regulation of aromatase activity under E2 exposure. Our results demonstrated a direct involvement of nonreceptor tyrosine-kinase c-Src in E2-stimulated aromatase activity because inhibition of its signaling abrogated the up-regulatory effects induced by E2 on aromatase activity as well as phosphorylation of aromatase protein. In addition, from our data it emerges that aromatase is a target of cross talk between growth factor receptors and estrogen receptor alpha signaling. These findings show, for the first time, that tyrosine phosphorylation processes play a key role in the rapid changes induced by E2 in aromatase enzymatic activity, revealing the existence of a short nongenomic autocrine loop between E2 and aromatase in breast cancer cells.


Journal of Cellular Physiology | 2012

Oldenlandia diffusa extracts exert antiproliferative and apoptotic effects on human breast cancer cells through ERα/Sp1-mediated p53 activation†‡

Guowei Gu; Ines Barone; Luca Gelsomino; Cinzia Giordano; Daniela Bonofiglio; Giancarlo A. Statti; Francesco Menichini; Stefania Catalano; Sebastiano Andò

Breast cancer is the most frequent tumor and a major cause of death among women. Estrogens play a crucial role in breast tumor growth, which is the rationale for the use of hormonal antiestrogen therapies. Unfortunately, not all therapeutic modalities are efficacious and it is imperative to develop new effective antitumoral drugs. Oldenlandia diffusa (OD) is a well‐known medicinal plant used to prevent and treat many disorders, especially cancers. The aim of this study was to investigate the effects of OD extracts on breast cancer cell proliferation. We observed that OD extracts strongly inhibited anchorage‐dependent and ‐independent cell growth and induced apoptosis in estrogen receptor alpha (ERα)‐positive breast cancer cells, whereas proliferation and apoptotic responses of MCF‐10A normal breast epithelial cells were unaffected. Mechanistically, OD extracts enhance the tumor suppressor p53 expression as a result of an increased binding of ERα/Sp1 complex to the p53 promoter region. Finally, we isolated ursolic and oleanolic acids as the bioactive compounds able to upregulate p53 expression and inhibit breast cancer cell growth. These acids were greatly effective in reducing tamoxifen‐resistant growth of a derivative MCF‐7 breast cancer cell line resistant to the antiestrogen treatment. Our results evidence how OD, and its bioactive compounds, exert antiproliferative and apoptotic effects selectively in ERα‐positive breast cancer cells, highlighting the potential use of these herbal extracts as breast cancer preventive and/or therapeutic agents. J. Cell. Physiol. 227: 3363–3372, 2012.


Journal of the National Cancer Institute | 2011

Loss of Rho GDIα and Resistance to Tamoxifen via Effects on Estrogen Receptor α

Ines Barone; Lauren Brusco; Guowei Gu; Jennifer Selever; Amanda Beyer; Kyle Covington; Anna Tsimelzon; Tao Wang; Susan G. Hilsenbeck; Gary C. Chamness; Sebastiano Andò; Suzanne A. W. Fuqua

BACKGROUND Estrogen receptor (ER) α is a successful therapeutic target in breast cancer, but patients eventually develop resistance to antiestrogens such as tamoxifen. METHODS To identify genes whose expression was associated with the development of tamoxifen resistance and metastasis, we used microarrays to compare gene expression in four primary tumors from tamoxifen-treated patients whose breast cancers did not recur vs five metastatic tumors from patients whose cancers progressed during adjuvant tamoxifen treatment. Because Rho guanine dissociation inhibitor (GDI) α was underexpressed in the tamoxifen-resistant group, we stably transfected ERα-positive MCF-7 breast cancer cells with a plasmid encoding a short hairpin (sh) RNA to silence Rho GDIα expression. We used immunoblots and transcription assays to examine the role of Rho GDIα in ER-related signaling and growth of cells in vitro and as xenografts in treated nude mice (n = 8-9 per group) to examine the effects of Rho GDIα blockade on hormone responsiveness and metastatic behavior. The time to tumor tripling as the time in weeks from randomization to a threefold increase in total tumor volume over baseline was examined in treated mice. The associations of Rho GDIα and MTA2 levels with tamoxifen resistance were examined in microarray data from patients. All statistical tests were two-sided. RESULTS Rho GDIα was expressed at lower levels in ERα-positive tumors that recurred during tamoxifen treatment than in ERα-positive tamoxifen-sensitive primary tumors. MCF-7 breast cancer cells in which Rho GDIα expression had been silenced were tamoxifen-resistant, had increased Rho GTPase and p21-activated kinase 1 activity, increased phosphorylation of ERα at serine 305, and enhanced tamoxifen-induced ERα transcriptional activity compared with control cells. MCF-7 cells in which Rho GDIα expression was silenced metastasized with high frequency when grown as tumor xenografts. When mice were treated with estrogen or estrogen withdrawal, tripling times for xenografts from cells with Rho GDIα silencing were similar to those from vector-containing control cells; however, tripling times were statistically significantly faster than control when mice were treated with tamoxifen (median tripling time for tumors with Rho GDIα small interfering RNA = 2.34 weeks; for control tumors = not reached, hazard ratio = 4.13, 95% confidence interval = 1.07 to 15.96, P = .040 [adjusted for multiple comparisons, P = .119]). Levels of the metastasis-associated protein MTA2 were also increased upon Rho GDIα silencing, and combined Rho GDIα and MTA2 levels were associated with recurrence in 250 tamoxifen-treated patients. CONCLUSION Loss of Rho GDIα enhances metastasis and resistance to tamoxifen via effects on both ERα and MTA2 in models of ERα-positive breast cancer and in tumors of tamoxifen-treated patients.


Breast Cancer Research and Treatment | 2010

Growth factor-induced resistance to tamoxifen is associated with a mutation of estrogen receptor α and its phosphorylation at serine 305

Cinzia Giordano; Yukun Cui; Ines Barone; Sebastiano Andò; Michael A. Mancini; Valeria Berno; Suzanne A. W. Fuqua

Estrogens play a crucial role in breast tumor growth, which is the rationale for the use of antiestrogens, such as tamoxifen, in women with estrogen receptor (ER)-α-positive breast cancer. However, hormone resistance is a major clinical problem. Altered growth factor signaling to the ERα pathway has been shown to be associated with the development of clinical resistance. We previously have identified a mutation that replaces arginine for lysine at residue 303 (K303R) of ERα, which confers hypersensitive growth in low levels of estrogen. To determine if the K303R mutation could participate in the evolution of hormone resistance, we generated MCF-7 breast cancer cells stably transfected with either wild-type (WT) or K303R ERα. We found that the mutation confers decreased sensitivity to tamoxifen in the presence of the growth factor heregulin, using anchorage-independent growth assays. K303R ERα-expressing cells were hypersensitive to growth factor signals. Our data suggest that phosphorylation of serine 305 within the hinge domain of ERα might play a key role in increasing ligand-independent activity of the mutant receptor. We hypothesize that the mutation adapts the receptor for enhanced bidirectional cross-talk with the HER2 growth factor receptor pathway, which then impacts on responsiveness to tamoxifen.

Collaboration


Dive into the Ines Barone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge