Ines Glojnarić
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ines Glojnarić.
European Journal of Pharmacology | 2002
Ognjen Čulić; Vesna Eraković; Ivana Čepelak; Karmela Barišić; Karmen Brajša; Željko Ferenčić; Ružica Galović; Ines Glojnarić; Zoran Manojlović; Vesna Munić; Renata Novak-Mirčetić; Verica Pavičić-Beljak; Mirna Sučić; Marija Veljača; Tihana Žanić-Grubišić; Michael J. Parnham
Effects on human neutrophils and circulating inflammatory mediators were studied in 12 volunteers who received azithromycin (500 mg/day, p.o.) for 3 days. Blood was taken 1 h before treatment, 2.5, 24 h and 28 days after the last dose. An initial neutrophil degranulating effect of azithromycin was reflected in rapid decreases in azurophilic granule enzyme activities in cells and corresponding increases in serum. The oxidative response to a particulate stimulus was also acutely enhanced. These actions were associated with high plasma and neutrophil drug concentrations. A continuous fall in chemokine and interleukin-6 serum concentrations, within the non-pathological range, accompanied a delayed down-regulation of the oxidative burst and an increase in apoptosis of neutrophils up to 28 days after the last azithromycin dose. Neutrophils isolated from blood at this time point still contained detectable drug concentrations. Acute neutrophil stimulation could facilitate antibacterial effects of azithromycin, while delayed, potentially anti-inflammatory activity may curtail deleterious inflammation.
Journal of Pharmacology and Experimental Therapeutics | 2009
Martina Bosnar; Berislav Bošnjak; Snježana Čužić; Boška Hrvačić; Nikola Marjanovic; Ines Glojnarić; Ognjen Čulić; Michael J. Parnham; Vesna Eraković Haber
Macrolide antibiotics possess immunomodulatory/anti-inflammatory properties. These properties are considered fundamental for the efficacy of macrolide antibiotics in the treatment of chronic inflammatory diseases like diffuse panbronchiolitis and cystic fibrosis. However, the molecular mechanisms and cellular targets of anti-inflammatory/immunomodulatory macrolide activity are still not fully understood. To describe anti-inflammatory effects of macrolides in more detail and to identify potential biomarkers of their activity, we have investigated the influence of azithromycin and clarithromycin on the inflammatory cascade leading to neutrophil infiltration into lungs after intranasal lipopolysaccharide challenge in mice. Azithromycin and clarithromycin pretreatment reduced total cell and neutrophil numbers in bronchoalveolar lavage fluid and myeloperoxidase concentration in lung tissue. In addition, concentrations of several inflammatory mediators, including CCL2, granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin-1β (IL-1β), tumor necrosis factor α, and sE-selectin in lung homogenates were decreased after macrolide treatment. Inhibition of cytokine production observed in vivo was also corroborated in vitro in lipopolysaccharide-stimulated monocytes/macrophages, but not in an epithelial cell line. In summary, results presented in this article confirm that macrolides can suppress neutrophil-dominated pulmonary inflammation and suggest that the effect is mediated through inhibition of GM-CSF and IL-1β production by alveolar macrophages. Besides GM-CSF and IL-1β, CCL2 and sE-selectin are also identified as potential biomarkers of macrolide anti-inflammatory activity in the lungs.
International Immunopharmacology | 2011
Martina Bosnar; Snježana Čužić; Berislav Bošnjak; Krunoslav Nujić; Gabrijela Ergović; Nikola Marjanović; Ivanka Pašalić; Boška Hrvačić; Denis Polančec; Ines Glojnarić; Vesna Eraković Haber
Macrolide antibiotics, including azithromycin, also possess anti-inflammatory properties. However, the molecular mechanism(s) of activity as well as the target cells for their action have not been unambiguously identified as yet. In this study, the effects of azithromycin on lipopolysaccharide (LPS)-induced pulmonary neutrophilia were investigated in mice. Using immunohistochemistry, mRNA and specific protein assays, we confirmed that azithromycin ameliorates LPS-induced pulmonary neutrophilia by inhibiting interleukin-1β (IL-1β) expression and production selectively in alveolar macrophages as well as in LPS-stimulated J774.2 macrophage-derived cells in vitro. Inhibition by azithromycin of neutrophilia and IL-1β was accompanied by prevention of nuclear expression of activator protein-1 (AP-1) in both alveolar macrophages and J774.2 cells. The macrolide did not alter nuclear factor kappa B (NF-κB) or extracellular signal-regulated kinase 1/2 (ERK1/2) expression, activation or localization in LPS-stimulated lungs or in J774.2 cells. In conclusion, we have shown that inhibition of LPS-induced pulmonary neutrophilia and IL-1β concentrations in lung tissue following azithromycin treatment is mediated through effects on alveolar macrophages. In addition, we have shown for the first time, in an in vivo model, that azithromycin inhibits AP-1 activation in alveolar macrophages, an action confirmed on J774.2 cells in vitro.
European Journal of Pharmacology | 2009
Boška Hrvačić; Berislav Bošnjak; Martina Bosnar; Željko Ferenčić; Ines Glojnarić; Vesna Eraković Haber
Macrolide antibiotics, a class of potent antimicrobials, also possess immunomodulatory/anti-inflammatory properties. These properties are considered fundamental for the efficacy of macrolide antibiotics in the treatment of diffuse panbronchiolitis and cystic fibrosis. In patients with asthma, macrolide antibiotics have been reported to reduce airway hyperresponsiveness and improve pulmonary function. However, their beneficial actions in asthmatics possibly could be attributed to antimicrobial activity against atypical pathogens (e.g. Chlamydia pneumoniae), corticosteroid-sparing effect (inhibition of exogenous corticosteroid metabolism), and/or their anti-inflammatory/immunomodulatory effects. In order to investigate whether efficacy of macrolide antibiotics in asthma results from their immunomodulatory/anti-inflammatory activity, the influence of clarithromycin pretreatment (2 h before challenge) was examined on ovalbumin-induced airway hyperresponsiveness and airway inflammation in the mouse. Clarithromycin treatment (200 mg/kg intraperitoneally) decreased IL-4, IL-5, IL-13, CXCL2 and CCL2 concentrations in bronchoalveolar lavage fluid and markedly reduced inflammatory cell accumulation in bronchoalveolar lavage fluid and into the lungs, as revealed by histopathological examination. Furthermore, clarithromycin-induced reduction in inflammation was accompanied by normalization of airway hyperresponsiveness. In summary, in ovalbumin-induced mouse models, clarithromycin efficiently inhibited two important pathological characteristics of asthma, airway hyperresponsiveness and inflammation. These data suggest that the efficacy of clarithromycin, as well as of other macrolide antibiotics, in asthmatic patients could be attributed to their anti-inflammatory/immunomodulatory properties, and not only to their antimicrobial activity or exogenous corticosteroid-sparing effects.
Toxicologic Pathology | 2012
Snježana Čužić; Martina Bosnar; Miroslava Dominis Kramarić; Željko Ferenčić; Darko Marković; Ines Glojnarić; Vesna Eraković Haber
Smoking-associated chronic obstructive pulmonary disease is characterized by inflammation, changes affecting small airways, and development of emphysema. Various short- and long-term models have been introduced to investigate these processes. The aim of the present study was to identify markers of early epithelial injury/adaptation in a short-term animal model of cigarette smoke exposure. Initially, male BALB/c mice were exposed to smoke from one to five cigarettes and lung changes were assessed 4 and 24 hr after smoking cessation. Subsequently, animals were exposed to smoke from five cigarettes for 2 consecutive days and lungs investigated daily until the seventh postexposure day. Lung homogenates cytokines were determined, bronchioloalveolar fluid cells were counted, and lung tissue was analyzed by immunohistochemistry. Exposure to smoke from a single cigarette induced slight pulmonary neutrophilia. Smoke from two cigarettes additionally induced de novo expression of tight junction protein, claudin-3, by alveolar duct (AD) epithelial cells. Further increases in smoke exposure induced epithelial changes in airway progenitor regions. During the recovery period, the severity/frequency of epithelial reactions slowly decreased, coinciding with the switch from acute to a chronic inflammatory reaction. Claudin-3 and Clara cell 10 kDa protein were identified as possible markers of early tobacco smoke–induced epithelial injury along ADs.
International Journal of Antimicrobial Agents | 2008
Vanesa Ivetić Tkalčević; Berislav Bošnjak; Ivanka Pašalić; Boška Hrvačić; Kristina Šitum; Miroslava Dominis Kramarić; Ines Glojnarić; Vesna Eraković Haber
Fig. 1. (A) Effect of oral clarithromycin treatment on tumour necrosis factor-alpha (TNF ) concentrations in mouse plasma after intraperitoneal lipopolysaccharide (LPS) challenge (25 g/animal). Data are presented as values for individual mice (dots or triangles) and median group values (lines). *Significant decrease in comparison with vehicle-treated and LPSchallenged mice (Kruskal–Wallis followed by Dunn’s multiple comparison test; P < 0.05). (B) Effect of oral clarithromycin (100 mg/kg dose) on surLetters to the Editor / International Jour
The Journal of Antibiotics | 2011
Vanesa Ivetić Tkalčević; Boška Hrvačić; Ivanka Pašalić; Vesna Eraković Haber; Ines Glojnarić
Immunomodulatory effects of azithromycin on serum amyloid A production in lipopolysaccharide-induced endotoxemia in mice
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2011
Ana Bokulić; Verica Garaj-Vrhovac; Karmen Brajša; Koraljka Ðurić; Ines Glojnarić; Kristina Šitum
The aim of this study was to investigate the mutagenic and antigenotoxic effects of different doses of the flavonoid, apigenin, alone and in combination with the antitumor drugs, cyclophosphamide and doxorubicin, in vitro and in vivo. Using bacterial reverse mutation inhibition in vitro, with and without metabolic activation, the effect of apigenin (10 – 400 μg/plate) was studied on genotoxicity induced by cyclophosphamide (800 μg/plate) and by doxorubicin (0.2 μg/plate). Subsequent to a dose-finding study in vivo, CD1 mice were treated with either cyclophosphamide (40 mg/kg, i.p.) or doxorubicin (5 mg/kg, i.p.) with or without co-administration of apigenin (1–100 mg/kg, p.o.). Micronuclei were determined microscopically in blood smears and glutathione peroxidase (GPX), superoxide dismutase (SOD) and total antioxidative status (TAS) in whole blood, erythrocytes and plasma, respectively. Apigenin decreased doxorubicin-induced, but not cyclophosphamide-induced mutagenicity in vitro. In vivo, apigenin caused a statistically significant decrease in micronucleus frequency in response to cyclophosphamide, possibly due to active flavonoid metabolite formation or inhibition of cyclophosphamide metabolic activation. In animals treated with apigenin and doxorubicin, a significant decrease in micronucleus frequency was not observed, probably due to interindividual variability. No changes in GPX, SOD or TAS were observed in response to either cytotoxic agents or the flavonoid, possibly due to limited metabolic transformation of the drugs at the doses used. The results of the present study provide further evidence for the chemo-preventative properties of apigenin.
European Journal of Pharmacology | 2012
Dubravko Jelić; Iva Tatić; Marija Trzun; Boška Hrvačić; Karmen Brajša; Donatella Verbanac; Marija Tomaskovic; Ognjen Čulić; Roberto Antolović; Ines Glojnarić; Ivana Weygand-Đurašević; Sanda Vladimir-Knežević; Boris Mildner
A series of porphyrins, tetrapyrrole natural organic compounds, are evaluated here as endogenous anti-inflammatory agents. They directly inhibit the activity of Fyn, a non-receptor Src-family tyrosine kinase, triggering anti-inflammatory events associated with down-regulation of T-cell receptor signal transduction, leading to inhibition of tumor necrosis factor alpha (TNF-α) production. This is one of the major pro-inflammatory cytokines, associated with diseases such as diabetes, tumorigenesis, rheumatoid arthritis, and inflammatory bowel disease. Porphyrins, as a chemical class, inhibited Fyn kinase activity in a non-competitive, linear-mixed fashion. In cell-based in vitro experiments on polymorphonuclear cells, porphyrins inhibited TNF-α cytokine production, T-cell proliferation, and the generation of free radicals in the oxidative burst, in a concentration-related manner. In vivo, lipopolysaccharide-induced TNF-α production in mice was inhibited by several of the porphyrins. These findings may be very important for the overall understanding of the role(s) of porphyrins in inflammation and their possible application as new anti-inflammatory agents.
International Immunopharmacology | 2013
Martina Bosnar; Miroslava Dominis-Kramarić; Krunoslav Nujić; Darija Stupin Polančec; Nikola Marjanović; Ines Glojnarić; Vesna Eraković Haber
Recent reports suggest that azithromycin can shift macrophage polarization towards the alternatively activated M2 phenotype. In order to investigate its immunomodulatory activity in vivo, the influence of azithromycin on survival and cytokine production was assessed in the LPS tolerance model which is characterized by an M2 skewed response. For induction of tolerance, mice received an intraplantar injection of 30 μg LPS, 24 h prior to intravenous challenge with 350 μg LPS. Azithromycin (100 mg/kg) was administered orally, 2 h before LPS application. Influence of treatment on survival and cytokine concentration in serum was monitored. Azithromycin alone, instead of LPS, could not induce an LPS tolerant state. However, when administered before LPS priming it significantly increased survival, which was enhanced by concomitant azithromycin before LPS challenge. Azithromycin had no effect on survival when administered only prior to the LPS challenge. Tolerance induction by LPS priming was associated, upon LPS challenge, with decreased serum concentrations of pro-inflammatory cytokines, TNFα, IL-12p40 and CCL5, and increased serum concentrations of the anti-inflammatory cytokines, IL-10 and IL-1ra. Azithromycin treatment, prior to LPS priming, further reduced serum TNFα and CCL5, yielding the greatest inhibition when the macrolide was also given prior to LPS challenge. Serum concentrations of the anti-inflammatory cytokines, IL-10 and IL-1ra, were unchanged following azithromycin treatment. In summary, we have confirmed the immunomodulatory activity of azithromycin, as reflected in its ability to augment tolerance induction to LPS, promoting increased survival and reduced pro-inflammatory cytokine production, without affecting overt inflammation to LPS or anti-inflammatory cytokine production.