Ines Thiele
University of Luxembourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ines Thiele.
Nature Biotechnology | 2010
Jeffrey D. Orth; Ines Thiele; Bernhard O. Palsson
Flux balance analysis is a mathematical approach for analyzing the flow of metabolites through a metabolic network. This primer covers the theoretical basis of the approach, several practical examples and a software toolbox for performing the calculations.
Nucleic Acids Research | 2005
Ross Overbeek; Tadhg P. Begley; Ralph Butler; Jomuna V. Choudhuri; Han-Yu Chuang; Matthew Cohoon; Valérie de Crécy-Lagard; Naryttza N. Diaz; Terry Disz; Robert D. Edwards; Michael Fonstein; Ed D. Frank; Svetlana Gerdes; Elizabeth M. Glass; Alexander Goesmann; Andrew C. Hanson; Dirk Iwata-Reuyl; Roy A. Jensen; Neema Jamshidi; Lutz Krause; Michael Kubal; Niels Bent Larsen; Burkhard Linke; Alice C. McHardy; Folker Meyer; Heiko Neuweger; Gary J. Olsen; Robert Olson; Andrei L. Osterman; Vasiliy A. Portnoy
The release of the 1000th complete microbial genome will occur in the next two to three years. In anticipation of this milestone, the Fellowship for Interpretation of Genomes (FIG) launched the Project to Annotate 1000 Genomes. The project is built around the principle that the key to improved accuracy in high-throughput annotation technology is to have experts annotate single subsystems over the complete collection of genomes, rather than having an annotation expert attempt to annotate all of the genes in a single genome. Using the subsystems approach, all of the genes implementing the subsystem are analyzed by an expert in that subsystem. An annotation environment was created where populated subsystems are curated and projected to new genomes. A portable notion of a populated subsystem was defined, and tools developed for exchanging and curating these objects. Tools were also developed to resolve conflicts between populated subsystems. The SEED is the first annotation environment that supports this model of annotation. Here, we describe the subsystem approach, and offer the first release of our growing library of populated subsystems. The initial release of data includes 180 177 distinct proteins with 2133 distinct functional roles. This data comes from 173 subsystems and 383 different organisms.
Nature Protocols | 2007
Jan Schellenberger; Richard Que; Ronan M. T. Fleming; Ines Thiele; Jeffrey D. Orth; Adam M. Feist; Daniel C. Zielinski; Aarash Bordbar; Nathan E. Lewis; Sorena Rahmanian; Joseph Kang; Daniel R. Hyduke; Bernhard O. Palsson
Over the past decade, a growing community of researchers has emerged around the use of constraint-based reconstruction and analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a substantial update of this in silico toolbox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include (i) network gap filling, (ii) (13)C analysis, (iii) metabolic engineering, (iv) omics-guided analysis and (v) visualization. As with the first version, the COBRA Toolbox reads and writes systems biology markup language-formatted models. In version 2.0, we improved performance, usability and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the toolbox and validate results. This toolbox lowers the barrier of entry to use powerful COBRA methods.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Natalie C. Duarte; Scott A Becker; Neema Jamshidi; Ines Thiele; Monica L. Mo; Thuy D. Vo; Rohith Srivas; Bernhard O. Palsson
Metabolism is a vital cellular process, and its malfunction is a major contributor to human disease. Metabolic networks are complex and highly interconnected, and thus systems-level computational approaches are required to elucidate and understand metabolic genotype–phenotype relationships. We have manually reconstructed the global human metabolic network based on Build 35 of the genome annotation and a comprehensive evaluation of >50 years of legacy data (i.e., bibliomic data). Herein we describe the reconstruction process and demonstrate how the resulting genome-scale (or global) network can be used (i) for the discovery of missing information, (ii) for the formulation of an in silico model, and (iii) as a structured context for analyzing high-throughput biological data sets. Our comprehensive evaluation of the literature revealed many gaps in the current understanding of human metabolism that require future experimental investigation. Mathematical analysis of network structure elucidated the implications of intracellular compartmentalization and the potential use of correlated reaction sets for alternative drug target identification. Integrated analysis of high-throughput data sets within the context of the reconstruction enabled a global assessment of functional metabolic states. These results highlight some of the applications enabled by the reconstructed human metabolic network. The establishment of this network represents an important step toward genome-scale human systems biology.
Nature Protocols | 2010
Ines Thiele; Bernhard O. Palsson
Network reconstructions are a common denominator in systems biology. Bottom–up metabolic network reconstructions have been developed over the last 10 years. These reconstructions represent structured knowledge bases that abstract pertinent information on the biochemical transformations taking place within specific target organisms. The conversion of a reconstruction into a mathematical format facilitates a myriad of computational biological studies, including evaluation of network content, hypothesis testing and generation, analysis of phenotypic characteristics and metabolic engineering. To date, genome-scale metabolic reconstructions for more than 30 organisms have been published and this number is expected to increase rapidly. However, these reconstructions differ in quality and coverage that may minimize their predictive potential and use as knowledge bases. Here we present a comprehensive protocol describing each step necessary to build a high-quality genome-scale metabolic reconstruction, as well as the common trials and tribulations. Therefore, this protocol provides a helpful manual for all stages of the reconstruction process.
Nature Reviews Microbiology | 2009
Adam M. Feist; Markus Herrgard; Ines Thiele; Jennie L. Reed; Bernhard O. Palsson
Systems analysis of metabolic and growth functions in microbial organisms is rapidly developing and maturing. Such studies are enabled by reconstruction, at the genomic scale, of the biochemical reaction networks that underlie cellular processes. The network reconstruction process is organism specific and is based on an annotated genome sequence, high-throughput network-wide data sets and bibliomic data on the detailed properties of individual network components. Here we describe the process that is currently used to achieve comprehensive network reconstructions and discuss how these reconstructions are curated and validated. This Review should aid the growing number of researchers who are carrying out reconstructions for particular target organisms.
Nature Reviews Genetics | 2006
Jennifer L. Reed; Iman Famili; Ines Thiele; Bernhard O. Palsson
Our information about the gene content of organisms continues to grow as more genomes are sequenced and gene products are characterized. Sequence-based annotation efforts have led to a list of cellular components, which can be thought of as a one-dimensional annotation. With growing information about component interactions, facilitated by the advancement of various high-throughput technologies, systemic, or two-dimensional, annotations can be generated. Knowledge about the physical arrangement of chromosomes will lead to a three-dimensional spatial annotation of the genome and a fourth dimension of annotation will arise from the study of changes in genome sequences that occur during adaptive evolution. Here we discuss all four levels of genome annotation, with specific emphasis on two-dimensional annotation methods.
Journal of Bacteriology | 2005
Ines Thiele; Thuy D. Vo; Nathan D. Price; Bernhard O. Palsson
Helicobacter pylori is a human gastric pathogen infecting almost half of the world population. Herein, we present an updated version of the metabolic reconstruction of H. pylori strain 26695 based on the revised genome annotation and new experimental data. This reconstruction, iIT341 GSM/GPR, represents a detailed review of the current literature about H. pylori as it integrates biochemical and genomic data in a comprehensive framework. In total, it accounts for 341 metabolic genes, 476 intracellular reactions, 78 exchange reactions, and 485 metabolites. Novel features of iIT341 GSM/GPR include (i) gene-protein-reaction associations, (ii) elementally and charge-balanced reactions, (iii) more accurate descriptions of isoprenoid and lipopolysaccharide metabolism, and (iv) quantitative assessments of the supporting data for each reaction. This metabolic reconstruction was used to carry out in silico deletion studies to identify essential and conditionally essential genes in H. pylori. A total of 128 essential and 75 conditionally essential metabolic genes were identified. Predicted growth phenotypes of single knockouts were validated using published experimental data. In addition, in silico double-deletion studies identified a total of 47 synthetic lethal mutants involving 67 different metabolic genes in rich medium.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Juan Nogales; Steinn Gudmundsson; Eric M. Knight; Bernhard O. Palsson; Ines Thiele
Photosynthesis has recently gained considerable attention for its potential role in the development of renewable energy sources. Optimizing photosynthetic organisms for biomass or biofuel production will therefore require a systems understanding of photosynthetic processes. We reconstructed a high-quality genome-scale metabolic network for Synechocystis sp. PCC6803 that describes key photosynthetic processes in mechanistic detail. We performed an exhaustive in silico analysis of the reconstructed photosynthetic process under different light and inorganic carbon (Ci) conditions as well as under genetic perturbations. Our key results include the following. (i) We identified two main states of the photosynthetic apparatus: a Ci-limited state and a light-limited state. (ii) We discovered nine alternative electron flow pathways that assist the photosynthetic linear electron flow in optimizing the photosynthesis performance. (iii) A high degree of cooperativity between alternative pathways was found to be critical for optimal autotrophic metabolism. Although pathways with high photosynthetic yield exist for optimizing growth under suboptimal light conditions, pathways with low photosynthetic yield guarantee optimal growth under excessive light or Ci limitation. (iv) Photorespiration was found to be essential for the optimal photosynthetic process, clarifying its role in high-light acclimation. Finally, (v) an extremely high photosynthetic robustness drives the optimal autotrophic metabolism at the expense of metabolic versatility and robustness. The results and modeling approach presented here may promote a better understanding of the photosynthetic process. They can also guide bioengineering projects toward optimal biofuel production in photosynthetic organisms.
BMC Systems Biology | 2008
Juan Nogales; Bernhard O. Palsson; Ines Thiele
BackgroundPseudomonas putida is the best studied pollutant degradative bacteria and is harnessed by industrial biotechnology to synthesize fine chemicals. Since the publication of P. putida KT2440s genome, some in silico analyses of its metabolic and biotechnology capacities have been published. However, global understanding of the capabilities of P. putida KT2440 requires the construction of a metabolic model that enables the integration of classical experimental data along with genomic and high-throughput data. The constraint-based reconstruction and analysis (COBRA) approach has been successfully used to build and analyze in silico genome-scale metabolic reconstructions.ResultsWe present a genome-scale reconstruction of P. putida KT2440s metabolism, i JN746, which was constructed based on genomic, biochemical, and physiological information. This manually-curated reconstruction accounts for 746 genes, 950 reactions, and 911 metabolites. i JN746 captures biotechnologically relevant pathways, including polyhydroxyalkanoate synthesis and catabolic pathways of aromatic compounds (e.g., toluene, benzoate, phenylacetate, nicotinate), not described in other metabolic reconstructions or biochemical databases. The predictive potential of i JN746 was validated using experimental data including growth performance and gene deletion studies. Furthermore, in silico growth on toluene was found to be oxygen-limited, suggesting the existence of oxygen-efficient pathways not yet annotated in P. putidas genome. Moreover, we evaluated the production efficiency of polyhydroxyalkanoates from various carbon sources and found fatty acids as the most prominent candidates, as expected.ConclusionHere we presented the first genome-scale reconstruction of P. putida, a biotechnologically interesting all-surrounder. Taken together, this work illustrates the utility of i JN746 as i) a knowledge-base, ii) a discovery tool, and iii) an engineering platform to explore P. putidas potential in bioremediation and bioplastic production.