Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inga D. Neumann is active.

Publication


Featured researches published by Inga D. Neumann.


Frontiers in Neuroendocrinology | 2004

Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication.

Rainer Landgraf; Inga D. Neumann

As exemplified particularly with vasopressin and oxytocin, release of neuropeptides within the brain occurs from dendrites, somata, and axons of neurosecretory neurons; mechanisms include activation of intracellular Ca2+ stores, changed strength of synaptic input and altered interaction between transcription factors and gene promoters. Upon demand, both diffuse spread of neuropeptides in the extracellular fluid following dendritic release and focal release from axonal terminals may contribute to regionally and temporally varying combinations of neuromodulator and neurotransmitter actions, thus providing a theoretically unlimited variability in interneuronal signaling. Thus, instead of favoring volume or synaptic transmission following central neuropeptide release, a more dynamic concept is presented with multiple and variable modes of release and communication. This concept considers neuropeptides in the extracellular fluid of the brain rather than those in the cerebrospinal fluid or plasma as primary signals, triggering a variety of receptor-mediated effects, including those underlying behavioral and neuroendocrine regulation and psychopathology.


Journal of Neuroendocrinology | 2008

Brain oxytocin: a key regulator of emotional and social behaviours in both females and males.

Inga D. Neumann

In addition to various reproductive stimuli, the neuropeptide oxytocin (OXT) is released both from the neurohypophysial terminal into the blood stream and within distinct brain regions in response to stressful or social stimuli. Brain OXT receptor‐mediated actions were shown to be significantly involved in the regulation of a variety of behaviours. Here, complementary methodological approaches are discussed which were utilised to reveal, for example, anxiolytic and anti‐stress effects of OXT, both in females and in males, effects that were localised within the central amygdala and the hypothalamic paraventricular nucleus. Also, in male rats, activation of the brain OXT system is essential for the regulation of sexual behaviour, and increased OXT system activity during mating is directly linked to an attenuated anxiety‐related behaviour. Moreover, in late pregnancy and during lactation, central OXT is involved in the establishment and fine‐tuned maintenance of maternal care and maternal aggression. In monogamous prairie voles, brain OXT is important for mating‐induced pair bonding, especially in females. Another example of behavioural actions of intracerebral OXT is the promotion of social memory processes and recognition of con‐specifics, as revealed in rats, mice, sheep and voles. Experimental evidence suggests that, in humans, brain OXT exerts similar behavioural effects. Thus, the brain OXT system seems to be a potential target for the development of therapeutics to treat anxiety‐ and depression‐related diseases or abnormal social behaviours including autism.


Trends in Neurosciences | 2012

Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors

Inga D. Neumann; Rainer Landgraf

Oxytocin and vasopressin are regulators of anxiety, stress-coping, and sociality. They are released within hypothalamic and limbic areas from dendrites, axons, and perikarya independently of, or coordinated with, secretion from neurohypophysial terminals. Central oxytocin exerts anxiolytic and antidepressive effects, whereas vasopressin tends to show anxiogenic and depressive actions. Evidence from pharmacological and genetic association studies confirms their involvement in individual variation of emotional traits extending to psychopathology. Based on their opposing effects on emotional behaviors, we propose that a balanced activity of both brain neuropeptide systems is important for appropriate emotional behaviors. Shifting the balance between the neuropeptide systems towards oxytocin, by positive social stimuli and/or psychopharmacotherapy, may help to improve emotional behaviors and reinstate mental health.


Neuroscience | 1999

Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats

Inga D. Neumann; L. Torner; Alexandra Wigger

The involvement of brain oxytocin in the attenuated responsiveness of the hypothalamo-pituitary-adrenal axis and the oxytocin systems to external stressors found in pregnant and lactating rats has been studied, including both neuroendocrine and behavioural aspects. Intracerebroventricular infusion of an oxytocin receptor antagonist (0.75 microg/5 microl), but not of vehicle, elevated basal corticotropin and corticosterone secretion into blood of virgin female, but not of late pregnant or lactating rats. Oxytocin antagonist treatment further elevated the stress-induced (exposure to the elevated plus-maze or forced swimming) secretion of both corticotropin and corticosterone, but only in virgin and not in pregnant or lactating rats. Thus, corticotropin and corticosterone plasma concentrations remained attenuated in antagonist-treated pregnant and lactating animals. In contrast, infusion of the oxytocin antagonist significantly elevated the stress-induced secretion of oxytocin into blood in pregnant and lactating, but not in virgin, animals, indicating an autoinhibitory influence of intracerebral oxytocin on neurohypophysial oxytocin secretion induced by non-reproduction-related stimuli. Treatment with oxytocin antagonist 10 min prior to behavioural testing on the elevated plus-maze significantly reduced the anxiety-related behaviour in both pregnant and lactating rats, without exerting similar effects in virgin female rats. The results demonstrate a tonic inhibitory effect of endogenous oxytocin on corticotropin and, consequently, corticosterone secretion in virgin female rats, an effect which is absent in the peripartum period. In contrast, an anxiolytic action of endogenous oxytocin was detectable exclusively in pregnant and lactating rats. Therefore, we conclude that the actions of intracerebral oxytocin include independent effects on the responses of the hypothalamo-pituitary-adrenal axis and oxytocin systems to stressors and the anxiety-related behaviour which are modulated by the reproductive state of the animals.


The Journal of Physiology | 1998

Attenuated neuroendocrine responses to emotional and physical stressors in pregnant rats involve adenohypophysial changes

Inga D. Neumann; H. A. Johnstone; M. Hatzinger; G. Liebsch; M. Shipston; James A. Russell; Rainer Landgraf; A. J. Douglas

1 The responsiveness of the rat hypothalamo‐pituitary‐adrenal (HPA) axis and hypothalamo‐neurohypophysial system (HNS) to emotional (elevated plus‐maze) and physical (forced swimming) stressors and to administration of synthetic corticotrophin‐releasing hormone (CRH) was investigated during pregnancy and lactation. In addition to pregnancy‐related adaptations at the adenohypophysial level, behavioural responses accompanying the neuroendocrine changes were studied. 2 Whereas basal (a.m.) plasma corticosterone, but not corticotrophin (adrenocorticotrophic hormone; ACTH), levels were increased on the last day (i.e. on day 22) of pregnancy, the stress‐induced rise in both plasma hormone concentrations was increasingly attenuated with the progression of pregnancy beginning on day 15 and reaching a minimum on day 21 compared with virgin control rats. A similar attenuation of responses to both emotional and physical stressors was found in lactating rats. 3 Although the basal plasma oxytocin concentration was elevated in late pregnancy, the stress‐induced rise in oxytocin secretion was slightly lower in day 21 pregnant rats. In contrast to vasopressin, oxytocin secretion was increased by forced swimming in virgin and early pregnant rats indicating a differential stress response of these neurohypophysial hormones. 4 The blunted HPA response to stressful stimuli is partly due to alterations at the level of corticotrophs in the adenohypophysis, as ACTH secretion in response to CRH in vivo (40 ng kg−1, i.v.) was reduced with the progression of pregnancy and during lactation. In vitro measurement of cAMP levels in pituitary segments demonstrated reduced basal levels of cAMP and a lower increase after CRH stimulation (10 nM, 10 min) in day 21 pregnant compared with virgin rats, further indicating reduced corticotroph responsiveness to CRH in pregnancy. 5 The reduced pituitary response to CRH in late pregnancy is likely to be a consequence of a reduction in CRH receptor binding as revealed by receptor autoradiography. [125I] CRH binding in the anterior pituitary was significantly reduced in day 11, 17 and 22 pregnant rats compared with virgin controls. 6 Anxiety‐related behaviour of the animals as revealed by the time on and entries into the open arms of the elevated plus‐maze was different between virgin and pregnant rats with decreased number of entries indicating increased anxiety with the progression of pregnancy (except on pregnancy day 18). The emotional behaviour, however, was not correlated with the neuroendocrine responses. 7 The results indicate that the reduced response of the HPA axis to stressors described previously during lactation is already manifested around day 15 of pregnancy in the rat and involves physiological adaptations at the adenohypophysial level. However, alterations in stressor perception at higher brain levels with the progression of pregnancy may also be involved.


Journal of Neuroendocrinology | 2001

Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: partial action within the paraventricular nucleus.

Inga D. Neumann; Alexandra Wigger; Luz Torner; Florian Holsboer; Rainer Landgraf

Oxytocin is a classic reproductive neuropeptide in the female mammal, but its functions in the brain of the male have been less well studied. As stress induces intracerebral oxytocin release independently of gender, we postulated that central oxytocin may play a role in the control of stress responses. In both male and virgin female rats, oxytocin receptor blockade in the brain by intracerebral infusion of a selective oxytocin antagonist (des Gly‐NH2 d(CH2)5 [Tyr(Me)2, Thr4] OVT; 0.75 μg/5 μl increased the activity of the hypothalamo‐pituitary‐adrenal (HPA) axis as indicated by a significantly enhanced basal and stress‐induced (exposure to the elevated plus‐maze, forced swimming) secretion of corticotropin (ACTH) and corticosterone into blood. The anxiety‐related behaviour on the plus‐maze was not altered by the antagonist in either males or females. Infusion of the oxytocin antagonist into the hypothalamic paraventricular nucleus by reversed microdialysis resulted in a significant increase in basal release of ACTH in both male and virgin female rats. These results demonstrate a novel, gender‐independent physiological function of endogenous brain oxytocin in the regulation of neuroendocrine stress responses. Under basal conditions, the inhibition of the HPA axis occurs, at least in part, within the paraventricular nucleus.


The Journal of Neuroscience | 2005

Brain Oxytocin Correlates with Maternal Aggression: Link to Anxiety

Oliver J. Bosch; Simone Meddle; Daniela I. Beiderbeck; Alison J. Douglas; Inga D. Neumann

The oxytocinergic system is critically involved in the regulation of maternal behavior, which includes maternal aggression. Because aggression has been linked to anxiety, we investigated the maternal aggression and the role of brain oxytocin in lactating Wistar rats selectively bred for high anxiety-related behavior (HAB) or low anxiety-related behavior (LAB) during the 10 min maternal defense test. HAB dams displayed more maternal aggression against a virgin intruder compared with LAB dams, resulting in more defensive behavior and higher anxiety of HAB-defeated virgins. The different levels of aggression were accompanied by opposite oxytocin release patterns within the paraventricular nucleus (PVN; HAB, increase; LAB, decrease). Furthermore, oxytocin release was higher within the central nucleus of the amygdala (CeA) of HAB dams compared with LABs. A direct correlation between the offensive behavior displayed during the maternal defense test and local oxytocin release was found in both the PVN and CeA. Using retrodialysis, blockade of endogenous oxytocin action by infusion of an oxytocin receptor antagonist (des-Gly-NH2,d(CH2)5[Tyr(Me)2,Thr4]OVT) into the PVN or CeA reduced maternal aggression of HAB dams, whereas infusion of synthetic oxytocin into the PVN tended to increase aggression toward the intruder in LAB dams. There were no significant differences in oxytocin receptor mRNA expression or oxytocin receptor binding between lactating HAB and LAB dams. Therefore, differences in intracerebral release patterns of oxytocin, rather than differences at the level of oxytocin receptors, are critical for the regulation of maternal aggressive behavior.


Psychoneuroendocrinology | 2013

Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice.

Inga D. Neumann; Rodrigue Maloumby; Daniela I. Beiderbeck; Michael Lukas; Rainer Landgraf

The possibility to improve socio-emotional behaviors in humans by intranasal administration of synthetic oxytocin (OXT) attracts increasing attention, but its uptake into the brain has never been demonstrated so far. Here we used simultaneous microdialysis in both the dorsal hippocampus and amygdala of rats and mice in combination with concomitant blood sampling from the jugular vein to study the dynamics of the neuropeptide in brain extracellular fluid and plasma after its nasal administration. OXT was found to be increased in microdialysates from both the hippocampus and amygdala with peak levels occurring 30-60min after nasal administration. Despite a similar temporal profile of OXT concentrations in plasma, peripheral OXT is unlikely to contribute to dialysate OXT as calculated from in vitro recovery data, indicating a central route of transport. Moreover, intraperitoneal administration of synthetic OXT in identical amounts caused rapid peak levels in brain dialysates and plasma during the first 30min after treatment and a subsequent return toward baseline. While the precise route(s) of central transport remain to be elucidated, our data provide the first evidence that nasally applied OXT indeed reaches behaviorally relevant brain areas, and this uptake is paralleled by changes in plasma OXT.


Progress in Brain Research | 2002

Chapter 12 Involvement of the brain oxytocin system in stress coping: interactions with the hypothalamo-pituitary-adrenal axis

Inga D. Neumann

In response to various ethologically relevant stressors, oxytocin is released not only from neurohypophysial terminals into the blood, but also within distinct brain regions, for example the hypothalamic supraoptic and paraventricular nuclei, the septum and the amygdala in dependence on the quality and intensity of the stressor. Thus, oxytocin secretory activity may accompany the response of the hypothalamo-pituitary-adrenal (HPA) axis to a given stressor. In the present chapter, I try to summarize our efforts to reveal the physiological significance of intracerebrally released oxytocin in rats with respect to the regulation of the HPA axis under basal and stress conditions as well as with respect to behavioural stress responses. The effects of oxytocin appear to depend on the brain region studied and the state of activity of the animal (basal versus stress). In order to reveal interactions between the oxytocin system and the HPA axis, preliminary results are presented pointing towards a differential action of glucocorticoids on intracerebral and peripheral oxytocin release.


Neuroscience & Biobehavioral Reviews | 1996

Behavioral consequences of intracerebral vasopressin and oxytocin: focus on learning and memory

Mario Engelmann; Carsten T. Wotjak; Inga D. Neumann; Mike Ludwig; Rainer Landgraf

Since the pioneering work of David de Wied and his colleagues, the neuropeptides arginine vasopressin and oxytocin have been thought to play a pivotal role in behavioral regulation in general, and in learning and memory in particular. The present review focuses on the behavioral effects of intracerebral arginine vasopressin and oxytocin, with particular emphasis on the role of these neuropeptides as signals in interneuronal communication. We also discuss several methodological approaches that have been used to reveal the importance of these intracerebral neuropeptides as signals within signaling cascades. The literature suggests that arginine vasopressin improves, and oxytocin impairs, learning and memory. However, a critical analysis of the subject indicates the necessity for a revision of this generalized concept. We suggest that, depending on the behavioral test and the brain area under study, these endogenous neuropeptides are differentially involved in behavioral regulation; thus, generalizations derived from a single behavioral task should be avoided. In particular, recent studies on rodents indicate that socially relevant behaviors triggered by olfactory stimuli and paradigms in which the animals have to cope with an intense stressor (e.g., foot-shock motivated active or passive avoidance) are controlled by both arginine vasopressin and oxytocin released intracerebrally.

Collaboration


Dive into the Inga D. Neumann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luz Torner

Mexican Social Security Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Lukas

University of Regensburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge