Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inge Brouns is active.

Publication


Featured researches published by Inge Brouns.


Cancer Cell | 2011

Cell of Origin of Small Cell Lung Cancer: Inactivation of Trp53 and Rb1 in Distinct Cell Types of Adult Mouse Lung

Kate D. Sutherland; Natalie Proost; Inge Brouns; Dirk Adriaensen; Ji-Ying Song; Anton Berns

Small cell lung cancer (SCLC) is one of the most lethal human malignancies. To investigate the cellular origin(s) of this cancer, we assessed the effect of Trp53 and Rb1 inactivation in distinct cell types in the adult lung using adenoviral vectors that target Cre recombinase to Clara, neuroendocrine (NE), and alveolar type 2 (SPC-expressing) cells. Using these cell type-restricted Adeno-Cre viruses, we show that loss of Trp53 and Rb1 can efficiently transform NE and SPC-expressing cells leading to SCLC, albeit SPC-expressing cells at a lesser efficiency. In contrast, Clara cells were largely resistant to transformation. The results indicate that although NE cells serve as the predominant cell of origin of SCLC a subset of SPC-expressing cells are also endowed with this ability.


Cell and Tissue Research | 1998

Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies: an anterograde tracing and confocal microscopy study in adult rats.

Dirk Adriaensen; Jean-Pierre Timmermans; Inge Brouns; Hans-Rudolf Berthoud; Winfried Neuhuber; D.W. Scheuermann

Abstract Our present understanding of the morphology of neuroepithelial bodies (NEBs) in mammalian lungs is comprehensive. Several hypotheses have been put forward regarding their function but none has been proven conclusively. Microscopic data on the innervation that appears to affect the reaction of NEBs to stimuli have given rise to conflicting interpretations. The aim of this study has been to check the validity of the hypothesis that pulmonary NEBs receive an extensive vagal sensory innervation. The fluorescent neuronal tracer DiI was injected into the vagal sensory nodose ganglion and NEBs were visualized in toto by using immunocytochemistry and confocal microscopy on 100-µm-thick frozen sections of the lungs of adult rats. The most striking finding was the extensive intraepithelial terminal arborizations of DiI-labelled vagal afferents in intrapulmonary airways, apparently always co-appearing with calcitonin gene-related peptide (CGRP)-immunoreactive NEBs. Not all NEBs received a traced nerve fibre. Intrapulmonary CGRP-containing nerve fibres, including those innervating NEBs, always appeared to belong to a nerve fibre population different from the DiI-traced fibres and hence did not arise from the nodose ganglion. Therefore, at least some of the pulmonary NEBs in adult rats are supplied with sensory nerve fibres that originate from the vagal nodose ganglion and form beaded ramifications between the NEB cells, thus providing support for the hypothesis of a receptor function for NEBs.


Histochemistry and Cell Biology | 2002

Neurochemical identification of enteric neurons expressing P2X(3) receptors in the guinea-pig ileum

Luc Van Nassauw; Inge Brouns; Dirk Adriaensen; Geoffrey Burnstock; Jean-Pierre Timmermans

Abstract. It was hypothesised that P2X3 receptors, predominantly labelling spinal and cranial sensory ganglionic neurons, are also expressed in intrinsic sensory enteric neurons, although direct evidence is lacking. The aim of this study was to localise P2X3 receptors in the enteric nervous system of the guinea-pig ileum, and to neurochemically identify the P2X3-expressing neurons. In the submucous plexus, cholinergic neurons expressing calretinin (CRT), were immunostained for P2X3. These neurons made up about 12% of the submucous neurons. In the myenteric plexus, approximately 36% of the neurons expressed P2X3. Half of the latter neurons were immunoreactive for CRT, whereas about 20% were immunoreactive for nitric oxide synthase (NOS). Based on earlier neurochemical analysis of enteric neurons in the guinea-pig, the myenteric neurons exhibiting P2X3/CRT immunoreactivity were identified as longitudinal muscle motor neurons, and those expressing P2X3/NOS immunoreactivity as short inhibitory circular muscle motor neurons. In both plexuses, no colocalisation was observed between P2X3 and calbindin, a marker for intrinsic sensory neurons. Multiple staining with antisera raised against somatostatin, neuropeptidexa0Y, substancexa0P or neurofilament protein did not reveal any costaining. It can be concluded that in the guinea-pig ileum, intrinsic sensory neurons do not express P2X3 receptors. However, this does not negate the possibility that extrinsic sensory nerves expressing P2X3 are involved in a purinergic mechanosensory transduction pathway as demonstrated in other organs.


Pharmacological Reviews | 2012

Purinergic Signaling in the Airways

Geoffrey Burnstock; Inge Brouns; Dirk Adriaensen; Jean-Pierre Timmermans

Evidence for a significant role and impact of purinergic signaling in normal and diseased airways is now beyond dispute. The present review intends to provide the current state of knowledge of the involvement of purinergic pathways in the upper and lower airways and lungs, thereby differentiating the involvement of different tissues, such as the epithelial lining, immune cells, airway smooth muscle, vasculature, peripheral and central innervation, and neuroendocrine system. In addition to the vast number of well illustrated functions for purinergic signaling in the healthy respiratory tract, increasing data pointing to enhanced levels of ATP and/or adenosine in airway secretions of patients with airway damage and respiratory diseases corroborates the emerging view that purines act as clinically important mediators resulting in either proinflammatory or protective responses. Purinergic signaling has been implicated in lung injury and in the pathogenesis of a wide range of respiratory disorders and diseases, including asthma, chronic obstructive pulmonary disease, inflammation, cystic fibrosis, lung cancer, and pulmonary hypertension. These ostensibly enigmatic actions are based on widely different mechanisms, which are influenced by the cellular microenvironment, but especially the subtypes of purine receptors involved and the activity of distinct members of the ectonucleotidase family, the latter being potential protein targets for therapeutic implementation.


Journal of Histochemistry and Cytochemistry | 2002

Triple Immunofluorescence Staining with Antibodies Raised in the Same Species to Study the Complex Innervation Pattern of Intrapulmonary Chemoreceptors

Inge Brouns; Luc Van Nassauw; Jeroen Van Genechten; Mariusz Majewski; D.W. Scheuermann; Jean-Pierre Timmermans; Dirk Adriaensen

A general problem in immunocytochemistry is the development of a reliable multiple immunolabeling method when primary antibodies must be used that originate in the same species. We have developed a protocol for the immunodetection of three antigens in a single tissue preparation, using unconjugated primary antibodies raised in the same species. Immunocytochemical detection of neuronal nitric oxide synthase, calcitonin gene-related peptide, and calbindin D28k in the lung of rats demonstrated that part of the pulmonary neuroepithelial bodies are selectively contacted by at least three different nerve fiber populations. The first antigen was detected using tyramide signal amplification, a very sensitive method allowing a dilution of the first primary antibody far beyond the detection limit of fluorescently labeled secondary antibodies. The second antigen was visualized by a fluorophore-conjugated secondary monovalent Fab antibody that at the same time blocks the access of the third secondary antibody to the second primary antibody. Moreover, the monovalence of the Fab fragment prevents the third primary antibody from binding with the second-step secondary antibody. The triple staining technique described here is generally applicable, uses commercially available products only, and allows the detection of three antigens in the same preparation with primary antibodies that are raised in the same species.


Histochemistry and Cell Biology | 2009

Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs

Inge Brouns; Fusun Oztay; Isabel Pintelon; Ian De Proost; Robrecht Lembrechts; Jean-Pierre Timmermans; Dirk Adriaensen

As best characterized for rats, it is clear that pulmonary neuroepithelial bodies (NEBs) are contacted by a plethora of nerve fiber populations, suggesting that they represent an extensive group of multifunctional intraepithelial airway receptors. Because of the importance of genetically modified mice for functional studies, and the current lack of data, the main aim of the present study was to achieve a detailed analysis of the origin and neurochemical properties of nerve terminals associated with NEBs in mouse lungs. Antibodies against known selective markers for sensory and motor nerve terminals in rat lungs were used on lungs from control and vagotomized mice of two different strains, i.e., Swiss and C57-Bl6. NEB cells were visualized by antibodies against either the general neuroendocrine marker protein gene-product 9.5 (PGP9.5) or calcitonin gene-related peptide (CGRP). Thorough immunohistochemical examination of NEB cells showed that some of these NEB cells also exhibit calbindin D-28xa0k (CB) and vesicular acetylcholine transporter (VAChT) immunoreactivity (IR). Mouse pulmonary NEBs were found to receive intraepithelial nerve terminals of at least two different populations of myelinated vagal afferents: (1) Immunoreactive (ir) for vesicular glutamate transporters (VGLUTs) and CB; (2) expressing P2X2 and P2X3 ATP receptors. CGRP IR was seen in varicose vagal nerve fibers and in delicate non-vagal fibers, both in close proximity to NEBs. VAChT immunostaining showed very weak IR in the NEB-related intraepithelial vagal sensory nerve terminals. nNOS- or VIP-ir nerve terminals could be observed at the base of pulmonary NEBs. While a single NEB can be contacted by multiple nerve fiber populations, it was clear that none of the so far characterized nerve fiber populations contacts all pulmonary NEBs. The present study revealed that mouse lungs harbor several populations of nerve terminals that may selectively contact NEBs. Although at present the physiological significance of the innervation pattern of NEBs remains enigmatic, it is likely that NEBs are receptor–effector end-organs that may host complex and/or multiple functional properties in normal airways. The neurochemical information on the innervation of NEBs in mouse lungs gathered in the present study will be essential for the interpretation of upcoming functional data and for the study of transgenic mice.


American Journal of Respiratory Cell and Molecular Biology | 2009

Functional Live Cell Imaging of the Pulmonary Neuroepithelial Body Microenvironment

Ian De Proost; Isabel Pintelon; Inge Brouns; Alfons B.A. Kroese; Daniela Riccardi; Paul J. Kemp; Jean-Pierre Timmermans; Dirk Adriaensen

Pulmonary neuroepithelial bodies (NEBs) are densely innervated groups of neuroendocrine cells invariably accompanied by Clara-like cells. Together with NEBs, Clara-like cells form the so-called NEB microenvironment, which recently has been assigned a potential pulmonary stem cell niche. Conclusive data on the nature of physiological stimuli for NEBs are lacking. This study aimed at developing an ex vivo mouse lung vibratome slice model for confocal live cell imaging of physiological reactions in identified NEBs and surrounding epithelial cells. Immunohistochemistry of fixed slices demonstrated that NEBs are almost completely shielded from the airway lumen by tight junction-linked Clara-like cells. Besides the unambiguous identification of NEBs, the fluorescent dye 4-Di-2-ASP allowed microscopic identification of ciliated cells, Clara cells, and Clara-like cells in live lung slices. Using the mitochondrial uncoupler FCCP and a mitochondrial membrane potential indicator, JC-1, increases in 4-Di-2-ASP fluorescence in NEB cells and ciliated cells were shown to represent alterations in mitochondrial membrane potential. Changes in the intracellular free calcium concentration ([Ca2+](i)) in NEBs and surrounding airway epithelial cells were simultaneously monitored using the calcium indicator Fluo-4. Application (5 s) of 50 mM extracellular potassium ([K+](o)) evoked a fast and reproducible [Ca2+](i) increase in NEB cells, while Clara-like cells displayed a delayed (+/- 4 s) [Ca2+](i) increase, suggestive of an indirect, NEB-mediated activation. The presented approach opens interesting new perspectives for unraveling the functional significance of pulmonary NEBs in control lungs and disease models, and for the first time allows direct visualization of local interactions within the NEB microenvironment.


Histochemistry and Cell Biology | 2004

Vesicular glutamate transporter 2 is expressed in different nerve fibre populations that selectively contact pulmonary neuroepithelial bodies

Inge Brouns; Isabel Pintelon; Jeroen Van Genechten; Ian De Proost; Jean-Pierre Timmermans; Dirk Adriaensen

Pulmonary neuroepithelial body (NEB) receptors in rats receive at least four different nerve fibre populations. In addition to a spinal sensory innervation that contacts NEBs at their basal side, extensive vagal nodose sensory terminals and separate nitrergic and cholinergic nerve endings protrude between NEB cells. In the present study, antibodies against the vesicular glutamate transporterxa02 (VGLUT2), a transmembrane protein responsible for loading glutamate into synaptic vesicles, were used to investigate whether some of the nerve terminals contacting NEBs in rat lungs might use glutamate as a neurotransmitter. VGLUT2 immunoreactivity (IR) was detected in extensive intraepithelial arborising nerve terminals that appeared to contact most of the NEBs. Multiple immunostaining showed VGLUT2xa0IR in the vagal nodose and spinal sensory nerve terminals contacting NEBs, and in another, most likely sensory, intraepithelial nerve fibre population, the origin and further characteristics of which remain to be elucidated. At least part of the VGLUT2-immunoreactive nerve fibres that contact NEBs were shown to be myelinated. The expression of VGLUT2 indicates that glutamate is stored and released as a neurotransmitter in terminals of several pulmonary (sensory) nerve fibre populations that selectively relate to the complex NEB receptors. The present study strongly suggests an involvement of glutamatergic mechanisms in the peripheral transduction of sensory stimuli from the lungs, via the release of glutamate from nerve terminals, thereby modulating the activity of NEB receptor cells or the excitability of afferent nerves.


Histochemistry and Cell Biology | 2006

Neurochemical characterisation of sensory receptors in airway smooth muscle: comparison with pulmonary neuroepithelial bodies.

Inge Brouns; Isabel Pintelon; Ian De Proost; Roel Alewaters; Jean-Pierre Timmermans; Dirk Adriaensen

Descriptions of morphologically well-defined sensory airway receptors are sparse, in contrast to the multiplicity of airway receptors that have been identified electrophysiologically. The present study aimed at further determining the location, morphology and neurochemical coding of subepithelial receptor-like structures that have been sporadically reported in the wall of large diameter airways. The results were compared with those obtained for pulmonary neuroepithelial bodies (NEBs), which are complex intraepithelial sensory airway receptors. Multiple immunocytochemical staining showed branching laminar subepithelial receptor-like endings, which were found to intercalate in the smooth muscle layer of intrapulmonary conducting airways in rats. Because of the consistent intimate association with the airway smooth muscle, the laminar terminals will further be referred to as ‘smooth muscle-associated airway receptors (SMARs)’. SMARs were characterised by their Na+/K+-ATPase α3, vesicular glutamate transporter 1 (VGLUT1) and VGLUT2-immunoreactivity, expression of the ATP receptor P2X3, and the presence of calcium-binding proteins. Nerve fibres giving rise to SMARs were shown to be myelinated and to have a vagal origin. Interestingly, the neurochemical coding and receptor-like appearance of SMARs appeared to be almost identical to at least part of the complex vagal sensory terminals in NEBs. Intraepithelial nerve endings in pulmonary NEBs were indeed also shown to originate from myelinated vagal afferent nerve fibres, and to express Na+/K+-ATPase α3, VGLUT1, VGLUT2, P2X3 and calcium-binding proteins. Since several of the latter proteins have been reported as markers for mechanoreceptor terminals in other organs, both SMARs and the vagal nodose nerve terminals in NEBs seem good candidates to represent the morphological counterparts of at least subsets of the extensive population of physiologically characterised myelinated vagal airway mechanoreceptors. The observation that SMARs and NEBs are regularly found in each other’s immediate neighbourhood, and the very similar characteristics of their nerve terminals, point out that the interpretation of electrophysiological data based on ‘local’ stimuli should be made with great caution.


Autonomic Neuroscience: Basic and Clinical | 2006

Sensory receptors in the airways: Neurochemical coding of smooth muscle-associated airway receptors and pulmonary neuroepithelial body innervation

Inge Brouns; Ian De Proost; Isabel Pintelon; Jean-Pierre Timmermans; Dirk Adriaensen

Mainly due to the lack of conclusive morphological data, correlation between functionally and morphologically defined lung receptors has so far been unsatisfactory. In the present study, multiple immunocytochemical stainings with a panel of markers for (mechanso)sensory nerve fibres were performed in order to visualise putative receptor terminals in rat intrapulmonary airways. We first focussed on determining the location, morphology and neurochemical coding of subepithelial receptor-like structures that have been sporadically reported in the wall of large diameter airways. Immunostaining with antibodies against Na+/K+-ATPase alpha3, vesicular glutamate transporter 1 (VGLUT1) and VGLUT2 revealed branching laminar subepithelial receptor endings associated with airway smooth muscle. The latter nerve terminals appeared to further express calbindin D28k (CB), and the ATP receptor P2X3, but were calcitonin gene-related peptide (CGRP)-negative. The nerve fibres that give rise to these terminals were shown to be myelinated and have a vagal sensory origin. Because of the close association between the laminar terminals of this receptor-like structures and airway smooth muscle, we will further refer to these clearly morphologically identifiable sensory end organs as smooth muscle-associated airway receptors (SMARs). Secondly, we further explored the sensory innervation of pulmonary neuroepithelial bodies (NEBs). NEBs are intraepithelial groups of neuroendocrine cells, contacted by several nerve fibre populations, at least three of which are sensory. The spinal sensory innervation of NEBs expresses CGRP and substance P, contacts NEBs at their basal pole, and is capsaicin-sensitive. The intraepithelial vagal sensory innervation of NEBs, on the other hand, appears to be myelinated and could be labelled by antibodies against VGLUT1, VGLUT2, CB and P2X3 receptors. Na+/K+-ATPase alpha3 immunostaining additionally labelled part of the vagal sensory innervation of rat pulmonary NEBs. The neurochemical coding and receptor-like appearance of SMARs and of the complex vagal sensory innervation of NEBs appeared to be almost identical and reminiscent of mechanosensors. Both SMARs and vagal nodose nerve terminals in NEBs therefore likely represent the morphological counterparts of subgroups of the extensive population of physiologically characterised myelinated vagal airway receptors, the majority of which are mechanosensitive. Electrophysiological data based on local stimuli should be interpreted with caution, because of the regular close apposition of SMARs and NEBs and the very similar characteristics of their nerve terminals.

Collaboration


Dive into the Inge Brouns's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge