Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inge De Clercq is active.

Publication


Featured researches published by Inge De Clercq.


The Plant Cell | 2010

Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance.

Vanesa B. Tognetti; Olivier Van Aken; Kris Morreel; Korneel Vandenbroucke; Brigitte van de Cotte; Inge De Clercq; Sheila Chiwocha; Ricarda Fenske; Els Prinsen; Wout Boerjan; Bernard Genty; Keith A. Stubbs; Dirk Inzé; Frank Van Breusegem

The hydrogen peroxide–responsive UDP-glucosyltransferase UGT74E2 from Arabidopsis thaliana is shown to be involved in modulation of plant architecture and water stress response through its activity toward the auxin indole-3-butyric acid (IBA). Evidence is provided that, during water stress, IBA and IBA-glucose levels increase, and auxins help maintain the photosynthetic capacity under stress. Reactive oxygen species and redox signaling undergo synergistic and antagonistic interactions with phytohormones to regulate protective responses of plants against biotic and abiotic stresses. However, molecular insight into the nature of this crosstalk remains scarce. We demonstrate that the hydrogen peroxide–responsive UDP-glucosyltransferase UGT74E2 of Arabidopsis thaliana is involved in the modulation of plant architecture and water stress response through its activity toward the auxin indole-3-butyric acid (IBA). Biochemical characterization of recombinant UGT74E2 demonstrated that it strongly favors IBA as a substrate. Assessment of indole-3-acetic acid (IAA), IBA, and their conjugates in transgenic plants ectopically expressing UGT74E2 indicated that the catalytic specificity was maintained in planta. In these transgenic plants, not only were IBA-Glc concentrations increased, but also free IBA levels were elevated and the conjugated IAA pattern was modified. This perturbed IBA and IAA homeostasis was associated with architectural changes, including increased shoot branching and altered rosette shape, and resulted in significantly improved survival during drought and salt stress treatments. Hence, our results reveal that IBA and IBA-Glc are important regulators of morphological and physiological stress adaptation mechanisms and provide molecular evidence for the interplay between hydrogen peroxide and auxin homeostasis through the action of an IBA UGT.


Plant Physiology | 2010

Developmental Stage Specificity and the Role of Mitochondrial Metabolism in the Response of Arabidopsis Leaves to Prolonged Mild Osmotic Stress

Aleksandra Skirycz; Stefanie De Bodt; Toshihiro Obata; Inge De Clercq; Hannes Claeys; Riet De Rycke; Megan Andriankaja; Olivier Van Aken; Frank Van Breusegem; Alisdair R. Fernie; Dirk Inzé

When subjected to stress, plants reprogram their growth by largely unknown mechanisms. To provide insights into this process, the growth of Arabidopsis (Arabidopsis thaliana) leaves that develop under mild osmotic stress was studied. Early during leaf development, cell number and size were reduced by stress, but growth was remarkably adaptable, as division and expansion rates were identical to controls within a few days of leaf initiation. To investigate the molecular basis of the observed adaptability, leaves with only proliferating, exclusively expanding, and mature cells were analyzed by transcriptomics and targeted metabolomics. The stress response measured in growing and mature leaves was largely distinct; several hundred transcripts and multiple metabolites responded exclusively in the proliferating and/or expanding leaves. Only a few genes were differentially expressed across the three stages. Data analysis showed that proliferation and expansion were regulated by common regulatory circuits, involving ethylene and gibberellins but not abscisic acid. The role of ethylene was supported by the analysis of ethylene-insensitive mutants. Exclusively in proliferating cells, stress induced genes of the so-called “mitochondrial dysfunction regulon,” comprising alternative oxidase. Up-regulation for eight of these genes was confirmed with promoter:β-glucuronidase reporter lines. Furthermore, mitochondria of stress-treated dividing cells were morphologically distinct from control ones, and growth of plants overexpressing the alternative oxidase gene was more tolerant to osmotic and drought stresses. Taken together, our data underline the value of analyzing stress responses in development and demonstrate the importance of mitochondrial respiration for sustaining cell proliferation under osmotic stress conditions.


The Plant Cell | 2013

The Membrane-Bound NAC Transcription Factor ANAC013 Functions in Mitochondrial Retrograde Regulation of the Oxidative Stress Response in Arabidopsis

Inge De Clercq; Vanessa Vermeirssen; Olivier Van Aken; Klaas Vandepoele; Monika W. Murcha; Simon R. Law; Annelies Inzé; Sophia Ng; Aneta Ivanova; Debbie Rombaut; Brigitte van de Cotte; Pinja Jaspers; Yves Van de Peer; Jaakko Kangasjärvi; James Whelan; Frank Van Breusegem

This work reports the discovery of a cis-regulatory motif in the promoters of genes that are subject to mitochondrial retrograde regulation and the identification of transcription factors that bind to this element, thereby steering mitochondrial retrograde-induced gene expression. Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely candidate signaling molecules for MRR, the protein signaling components in plants remain largely unknown. Through meta-analysis of transcriptome data, we detected a set of genes that are common and robust targets of MRR and used them as a bait to identify its transcriptional regulators. In the upstream regions of these mitochondrial dysfunction stimulon (MDS) genes, we found a cis-regulatory element, the mitochondrial dysfunction motif (MDM), which is necessary and sufficient for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid analysis and electrophoretic mobility shift assays revealed that the transmembrane domain–containing NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 mediates MRR-induced expression of the MDS genes by direct interaction with the MDM cis-regulatory element and triggers increased oxidative stress tolerance. In conclusion, we characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana.


The Plant Cell | 2013

A Membrane-Bound NAC Transcription Factor, ANAC017, Mediates Mitochondrial Retrograde Signaling in Arabidopsis

Sophia Ng; Aneta Ivanova; Owen Duncan; Simon R. Law; Olivier Van Aken; Inge De Clercq; Y. Wang; Chris Carrie; Lin Xu; Beata Kmiec; Hayden Walker; Frank Van Breusegem; James Whelan; Estelle Giraud

This work identifies a biological role for ANAC017 as an integral cellular component in mitochondrial retrograde signaling and a high-level transcriptional regulator that is necessary for H2O2-mediated primary stress responses in plants. Plants require daily coordinated regulation of energy metabolism for optimal growth and survival and therefore need to integrate cellular responses with both mitochondrial and plastid retrograde signaling. Using a forward genetic screen to characterize regulators of alternative oxidase1a (rao) mutants, we identified RAO2/Arabidopsis NAC domain-containing protein17 (ANAC017) as a direct positive regulator of AOX1a. RAO2/ANAC017 is targeted to connections and junctions in the endoplasmic reticulum (ER) and F-actin via a C-terminal transmembrane (TM) domain. A consensus rhomboid protease cleavage site is present in ANAC017 just prior to the predicted TM domain. Furthermore, addition of the rhomboid protease inhibitor N-p-Tosyl-l-Phe chloromethyl abolishes the induction of AOX1a upon antimycin A treatment. Simultaneous fluorescent tagging of ANAC017 with N-terminal red fluorescent protein (RFP) and C-terminal green fluorescent protein (GFP) revealed that the N-terminal RFP domain migrated into the nucleus, while the C-terminal GFP tag remained in the ER. Genome-wide analysis of the transcriptional network regulated by RAO2/ANAC017 under stress treatment revealed that RAO2/ANAC017 function was necessary for >85% of the changes observed as a primary response to cytosolic hydrogen peroxide (H2O2), but only ∼33% of transcriptional changes observed in response to antimycin A treatment. Plants with mutated rao2/anac017 were more stress sensitive, whereas a gain-of-function mutation resulted in plants that had lower cellular levels of H2O2 under untreated conditions.


Molecular Plant | 2014

Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress.

Sophia Ng; Inge De Clercq; Olivier Van Aken; Simon R. Law; Aneta Ivanova; Patrick Willems; Estelle Giraud; Frank Van Breusegem; James Whelan

Mitochondrial biogenesis and function in plants require the expression of over 1000 nuclear genes encoding mitochondrial proteins (NGEMPs). The expression of these genes is regulated by tissue-specific, developmental, internal, and external stimuli that result in a dynamic organelle involved in both metabolic and a variety of signaling processes. Although the metabolic and biosynthetic machinery of mitochondria is relatively well understood, the factors that regulate these processes and the various signaling pathways involved are only beginning to be identified at a molecular level. The molecular components of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling pathways that regulate the expression of NGEMPs interact with chloroplast-, growth-, and stress-signaling pathways in the cell at a variety of levels, with common components involved in transmission and execution of these signals. This positions mitochondria as important hubs for signaling in the cell, not only in direct signaling of mitochondrial function per se, but also in sensing and/or integrating a variety of other internal and external signals. This integrates and optimizes growth with energy metabolism and stress responses, which is required in both photosynthetic and non-photosynthetic cells.


Nature Communications | 2015

Cytokinin response factors regulate PIN-FORMED auxin transporters

Mária Šimášková; José Antonio O’Brien; Mamoona Khan; Giel Van Noorden; Krisztina Ötvös; Anne Vieten; Inge De Clercq; Johanna Maria Adriana Van Haperen; Candela Cuesta; Klára Hoyerová; Steffen Vanneste; Peter Marhavý; Krzysztof Wabnik; Frank Van Breusegem; Moritz K. Nowack; Angus S. Murphy; Jiří Friml; Dolf Weijers; Tom Beeckman; Eva Benková

Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development.


The Plant Cell | 2014

Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress

Vanessa Vermeirssen; Inge De Clercq; Thomas Van Parys; Frank Van Breusegem; Yves Van de Peer

Applying a combination of algorithms on an Arabidopsis abiotic stress gene expression compendium generated system-wide predictions of transcription regulatory interactions and functional relationships. This joined computational and experimental approach identified a set of transcription factors that highly regulate one another and function in detoxification during oxidative stress. The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation.


Plant Journal | 2014

The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana

Botao Zhang; Olivier Van Aken; Louise F. Thatcher; Inge De Clercq; Owen Duncan; Simon R. Law; Monika W. Murcha; Margaretha J. van der Merwe; Hamed Soren Seifi; Chris Carrie; Christopher I. Cazzonelli; Jordan Radomiljac; Monica Höfte; Karam B. Singh; Frank Van Breusegem; James Whelan

One of the most stress-responsive genes encoding a mitochondrial protein in Arabidopsis (At3g50930) has been annotated as AtBCS1 (cytochrome bc1 synthase 1), but was previously functionally uncharacterised. Here, we show that the protein encoded by At3g50930 is present as a homo-multimeric protein complex on the outer mitochondrial membrane and lacks the BCS1 domain present in yeast and mammalian BCS1 proteins, with the sequence similarity restricted to the AAA ATPase domain. Thus we propose to re-annotate this protein as AtOM66 (Outer Mitochondrial membrane protein of 66 kDa). While transgenic plants with reduced AtOM66 expression appear to be phenotypically normal, AtOM66 over-expression lines have a distinct phenotype, showing strong leaf curling and reduced starch content. Analysis of mitochondrial protein content demonstrated no detectable changes in mitochondrial respiratory complex protein abundance. Consistent with the stress inducible expression pattern, over-expression lines of AtOM66 are more tolerant to drought stress but undergo stress-induced senescence earlier than wild type. Genome-wide expression analysis revealed a constitutive induction of salicylic acid-related (SA) pathogen defence and cell death genes in over-expression lines. Conversely, expression of SA marker gene PR-1 was reduced in atom66 plants, while jasmonic acid response genes PDF1.2 and VSP2 have increased transcript abundance. In agreement with the expression profile, AtOM66 over-expression plants show increased SA content, accelerated cell death rates and are more tolerant to the biotrophic pathogen Pseudomonas syringae, but more susceptible to the necrotrophic fungus Botrytis cinerea. In conclusion, our results demonstrate a role for AtOM66 in cell death and amplifying SA signalling.


Plant Cell and Environment | 2016

Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses

Oliver Berkowitz; Inge De Clercq; Frank Van Breusegem; James Whelan

Mitochondria play a central role in plant metabolism as they are a major source of ATP through synthesis by the oxidative phosphorylation pathway and harbour key metabolic reactions such as the TCA cycle. The energy and building blocks produced by mitochondria are essential to drive plant growth and development as well as to provide fuel for responses to abiotic and biotic stresses. The majority of mitochondrial proteins are encoded in the nuclear genome and have to be imported into the organelle. For the regulation of the corresponding genes intricate signalling pathways exist to adjust their expression. Signals directly regulate nuclear gene expression (anterograde signalling) to adjust the protein composition of the mitochondria to the needs of the cell. In parallel, mitochondria communicate back their functional status to the nucleus (retrograde signalling) to prompt transcriptional regulation of responsive genes via largely unknown signalling mechanisms. Plant hormones are the major signalling components regulating all layers of plant development and cellular functions. Increasing evidence is now becoming available that plant hormones are also part of signalling networks controlling mitochondrial function and their biogenesis. This review summarizes recent advances in understanding the interaction of mitochondrial and hormonal signalling pathways.


Gene | 2012

Identification of cis-regulatory elements specific for different types of reactive oxygen species in Arabidopsis thaliana.

Veselin Petrov; Vanessa Vermeirssen; Inge De Clercq; Frank Van Breusegem; Ivan Minkov; Klaas Vandepoele; Tsanko S. Gechev

The type of reactive oxygen species (ROS) is a major factor that determines the specificity of biological responses. These responses may be elicited by activation of transcription factors that recognize ROS-specific cis-regulatory elements in target genes. In search for Arabidopsis promoter motifs specific for particular types of ROS, genome-wide microarray expression profiles for 283 abiotic stress-related conditions were subjected to cluster analysis to identify gene groups induced by singlet oxygen, superoxide radicals, and H(2)O(2). Promoters of these gene groups were analyzed to identify cis-regulatory elements that are associated with specific types of ROS. Eleven ROS-specific de novo identified elements, seven known promoter motifs and several sequences enriched in ROS-responsive clusters but lacking in specificity are reported. The conservation of the identified motifs was determined in orthologous genes in C. papaya, V. vinifera and P. trichocarpa. Finally, biological functions were attributed to the motifs by calculation of GO-term enrichment for genes with conserved ROS-responsive elements.

Collaboration


Dive into the Inge De Clercq's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Van Aken

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aneta Ivanova

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Simon R. Law

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Sophia Ng

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge