Ingela Bjurhager
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ingela Bjurhager.
Nano Letters | 2010
Andreas Walther; Ingela Bjurhager; Jani-Markus Malho; Jaakko Pere; Janne Ruokolainen; Lars Berglund; Olli Ikkala
Although remarkable success has been achieved to mimic the mechanically excellent structure of nacre in laboratory-scale models, it remains difficult to foresee mainstream applications due to time-consuming sequential depositions or energy-intensive processes. Here, we introduce a surprisingly simple and rapid methodology for large-area, lightweight, and thick nacre-mimetic films and laminates with superior material properties. Nanoclay sheets with soft polymer coatings are used as ideal building blocks with intrinsic hard/soft character. They are forced to rapidly self-assemble into aligned nacre-mimetic films via paper-making, doctor-blading or simple painting, giving rise to strong and thick films with tensile modulus of 45 GPa and strength of 250 MPa, that is, partly exceeding nacre. The concepts are environmentally friendly, energy-efficient, and economic and are ready for scale-up via continuous roll-to-roll processes. Excellent gas barrier properties, optical translucency, and extraordinary shape-persistent fire-resistance are demonstrated. We foresee advanced large-scale biomimetic materials, relevant for lightweight sustainable construction and energy-efficient transportation.
Angewandte Chemie | 2010
Andreas Walther; Ingela Bjurhager; Jani-Markus Malho; Janne Ruokolainen; Lars Berglund; Olli Ikkala
Taking the heat: Hard/soft core/shell colloidal building blocks allow large-scale self-assembly to form nacre-mimetic paper. The strength and stiffness of this material can be tailored by supramolecular ionic bonds. These lightweight biomimetic materials show excellent and tunable mechanical properties and heat and fire-shielding capabilities.
Biomacromolecules | 2010
Ingela Bjurhager; Anne-Mari Olsson; Bo Zhang; Lorenz Gerber; Manoj Kumar; Lars Berglund; Ingo Burgert; Björn Sundberg; Lennart Salmén
Several key enzymes in lignin biosynthesis of Populus have been down-regulated by transgenic approaches to investigate their role in wood lignification and to explore their potential for lignin modification. Cinnamate 4-hydroxylase is an enzyme in the early phenylpropanoid pathway that has not yet been functionally analyzed in Populus . This study shows that down-regulation of cinnamate 4-hydroxylase reduced Klason lignin content by 30% with no significant change in syringyl to guaiacyl ratio. The lignin reduction resulted in ultrastructural differences of the wood and a 10% decrease in wood density. Mechanical properties investigated by tensile tests and dynamic mechanical analysis showed a decrease in stiffness, which could be explained by the lower density. The study demonstrates that a large modification in lignin content only has minor influences on tensile properties of wood in its axial direction and highlights the usefulness of wood modified beyond its natural variation by transgene technology in exploring the impact of wood biopolymer composition and ultrastructure on its material properties.
Biomacromolecules | 2012
Ingela Bjurhager; Helena Halonen; Eva-Lisa Lindfors; Tommy Iversen; Gunnar Almkvist; E. Kristofer Gamstedt; Lars Berglund
In 1628, the Swedish warship Vasa capsized on her maiden voyage and sank in the Stockholm harbor. The ship was recovered in 1961 and, after polyethylene glycol (PEG) impregnation, it was displayed in the Vasa museum. Chemical investigations of the Vasa were undertaken in 2000, and extensive holocellulose degradation was reported at numerous locations in the hull. We have now studied the longitudinal tensile strength of Vasa oak as a function of distance from the surface. The PEG-content, wood density, and cellulose microfibril angle were determined. The molar mass distribution of holocellulose was determined as well as the acid and iron content. A good correlation was found between the tensile strength of the Vasa oak and the average molecular weight of the holocellulose, where the load-bearing cellulose microfibril is the critical constituent. The mean tensile strength is reduced by approximately 40%, and the most affected areas show a reduction of up to 80%. A methodology is developed where variations in density, cellulose microfibril angle, and PEG content are taken into account, so that cell wall effects can be evaluated in wood samples with different rate of impregnation and morphologies.
Holzforschung | 2011
Kirsi Leppänen; Ingela Bjurhager; Marko Peura; Aki Kallonen; Jussi-Petteri Suuronen; Paavo A. Penttilä; Jonathan Love; Ritva Serimaa
Abstract The impact of drying on the structure of the never-dried hardwood cell wall was studied at nanometer level by means of wide- and small-angle X-ray scattering (WAXS, SAXS), and at micrometer level by X-ray microtomography (μCT). Never-dried silver birch, European aspen and hybrid aspen samples were measured by WAXS in situ during drying in air. The samples included juvenile and mature wood, as well as normal and tension wood to allow comparison of the effects of different matrix compositions and microfibril angles. The deformations of cellulose crystallites and amorphous components of the cell wall were detected as changes in the cellulose reflections 200 and 004 and amorphous halo in the WAXS patterns. Especially, the width of the reflection 004, corresponding to the cellulose chain direction, increased due to drying in all the samples, indicating an increase of strain and disorder of the chains. Also, the cellulose unit cell shrank 0.2–0.3% during drying in this direction in all the samples except in hybrid aspen tension wood. According to the SAXS results of silver birch, the distance between micro-fibrils decreased during drying. It was detected by μCT that the mean cross-sectional maximum width of the parenchymatous rays decreased from that of never-dried to air-dried birch by roughly 16%.
Holzforschung | 2012
Kirsi Svedström; Ingela Bjurhager; Aki Kallonen; Marko Peura; Ritva Serimaa
Abstract The degradation of oak wood of the historical warship Vasa was studied, focusing on cellular structure by X-ray microtomography (μCT) and on the nanostructure of the cell wall by wide- and small-angle X-ray scattering (WAXS, SAXS). Solid samples [polyethylene glycol (PEG)-, impregnated and PEG-extracted] were submitted to X-ray analysis and the results compared to those of recent oak. The cellular structure of the Vasa oak was surprisingly well preserved at the micrometer level, according to the μCT images. As revealed by WAXS, the fraction of crystalline cellulose was lower in the Vasa samples compared with recent oak, but the average length and width of cellulose crystallites (25±2 nm and 3.0±0.1 nm, respectively), and the mean microfibril angles (4–9°), showed no significant differences. Accordingly, the crystalline parts of cellulose microfibrils are well preserved in the Vasa oak. The SAXS results indicated a declined short-range order between the cellulose microfibrils and a higher porosity of the Vasa oak compared with recent oak, which may be explained by modification of the hemicellulose-lignin matrix.
Journal of Wood Science | 2008
Ingela Bjurhager; Lars Berglund; Stig L. Bardage; Björn Sundberg
Functional analysis of genes and proteins involved in wood formation and fiber properties often involves phenotyping saplings of transgenic trees. The objective of the present study was to develop a tensile test method for small green samples from saplings, and to compare mechanical properties of juvenile European aspen (Populus tremula) and hybrid aspen (Populus tremula × tremuloides). Small microtomed sections were manufactured and successfully tested in tension parallel to fiber orientation. Strain was determined by digital speckle photography. Results showed significantly lower values for juvenile hybrid aspen in both Young’s modulus and tensile strength parallel to the grain. Average Young’s moduli spanned the ranges of 5.9–6.6 and 4.8–6.0 GPa for European aspen and hybrid aspen, respectively. Tensile strength was in the range of 45–49 MPa for European aspen and 32–45 MPa for hybrid aspen. The average density (oven-dry) was 284 kg/m3 for European aspen and 221 kg/m3 for hybrid aspen. Differences in mechanical properties correlated with differences in density.
Holzforschung | 2014
Shahin Norbakhsh; Ingela Bjurhager; Gunnar Almkvist
Abstract In the wood of the Swedish 17th century warship Vasa, iron (Fe)-catalyzed chemical degradation has taken place after the salvation in 1961, which is manifested in increased acidity accompanied by cellulose degradation and reduced strength in the oak hull. Model studies on fresh oak impregnated with Fe(II) also led to tensile strength (TS) reduction in the same order of magnitude as observed in the wood of the Vasa. In the present study, further experiments have been performed concerning the Fe-catalyzed wood degradation. Namely, the degree of wood degradation was monitored quantitatively by measurement of the O2 consumption of Fe(II)-impregnated oak, kept in closed vials with different relative humidities (RH), as a function of time. The initial O2 consumption was high and declined with time. After 200 days, the accumulated O2 consumption was 0.3–0.4 mmol g-1 wood. Degradation products with low molecular weight were analyzed. The release of CO2 and oxalic acid (OA) was positively correlated with RH (0.235 and 0.044 mmol g-1, respectively, at RH98% after 200 days). Samples kept for 1500 days at RH54% had accumulated 0.044 mmol OA g-1 wood, which is equal to the average OA content in the interior of Vasa oak (corresponding to 4 mg g-1). Oak samples, from which extractives had been removed prior to Fe(II) impregnation, did not change their O2 consumption or TS reduction compared to the nonextracted samples, indicating that extractives are not essential for cellulose degradation in this context.
Holzforschung | 2016
Gunnar Almkvist; Shahin Norbakhsh; Ingela Bjurhager; Kurt Varmuza
Abstract Oak from the Swedish warship Vasa and recent oak that was aged after impregnation with iron(II) chloride has been analyzed by FT-IR spectroscopy and submitted to tensile strength testing. The aim was to investigate correlations between FT-IR bands in the fingerprint region, chemical degradation, and tensile strength in iron contaminated oak. The concentration of carboxylic functions increased and the acetyl groups in the hemicellulose fraction were decreasing as a function of degradation time. These changes are accompanied by reduced tensile strength and elevated content of oxalic acid (OA) in both Vasa wood and the impregnated recent oak samples. To evaluate the possibility to predict tensile strength from spectral data, chemometric modeling by partial least-squares (PLS) regression was applied. The strategy of repeated double cross validation (rdCV) allowed a realistic prediction of tensile strength. Overall, chemical changes and mechanical performances of iron contaminated wood are strongly correlated and thus FT-IR spectroscopy is suited to predict the strength properties of the degraded wood.
Holzforschung | 2013
Shahin Norbakhsh; Ingela Bjurhager; Gunnar Almkvist
Abstract Previous studies of the oak wood of the 17th century warship the Vasa have shown significant changes in the chemical and mechanical properties compared with recent oak. The most important factors contributing to these changes are the incorporation of iron compounds during waterlogging and the uptake of polyethylene glycol (PEG) in the course of the 17 years of preservation treatment. To investigate the effect of iron-dependent oxidative degradation reactions, recent oak wood samples were impregnated with aqueous iron(II) chloride solution (0.1 M) and thereafter exposed to air or pure oxygen at controlled relative humidity in long-term experiments followed by tensile strength (TS) measurements. The iron-impregnated samples exposed to oxygen displayed significant effects already after 1 week and the reduction in TS was ~50% after 1 year. The samples treated with additional PEG displayed less TS reduction, whereas the addition of cysteine had no effect. The size exclusion chromatography of treated samples showed that the average molecular weight of holocellulose had decreased. The results confirm that iron compounds have a detrimental effect in wood and indicate that PEG might act as an antioxidant for the degradation processes. Concerning the Vasa, it may be concluded that most degradation related to iron compounds and oxidative processes have taken place during the first period of conservation when the wood was exposed to oxygen in a still very humid state. Thus, the current rate of oxidative degradation under the present relatively dry museum conditions should be relatively low.