Inger Øynebråten
Oslo University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Inger Øynebråten.
Journal of Immunology | 2005
Inger Øynebråten; Nicolas Barois; Kathrine Hagelsteen; Finn-Eirik Johansen; Oddmund Bakke; Guttorm Haraldsen
We have recently shown that several proinflammatory chemokines can be stored in secretory granules of endothelial cells (ECs). Subsequent regulated exocytosis of such chemokines may then enable rapid recruitment of leukocytes to inflammatory sites. Although IL-8/CXCL8 and eotaxin-3/CCL26 are sorted to the rod-shaped Weibel-Palade body (WPB), we found that GROα/CXCL1 and MCP-1/CCL2 reside in small granules that, similarly to the WPB, respond to secretagogue stimuli. In the present study, we report that GROα and MCP-1 colocalized in 50- to 100-nm granules, which occur throughout the cytoplasm and at the cell cortex. Immunofluorescence confocal microscopy revealed no colocalization with multimerin or tissue plasminogen activator, i.e., proteins that are released from small granules of ECs by regulated exocytosis. Moreover, the GROα/MCP-1-containing granules were Rab27-negative, contrasting the Rab27-positive, WPB. The secretagogues PMA, histamine, and forskolin triggered distinct dose and time-dependent responses of GROα release. Furthermore, GROα release was more sensitive than IL-8 release to inhibitors and activators of PKA and PKC but not to an activator of Epac, a cAMP-regulated GTPase exchange factor, indicating that GROα release is regulated by molecular adaptors different from those regulating exocytosis of the WPB. On the basis of these findings, we designated the GROα/MCP-1-containing compartment the type 2 granule of regulated secretion in ECs, considering the WPB the type 1 compartment. In conclusion, we propose that the GROα/MCP-1-containing type 2 granule shows preferential responsiveness to important mediators of EC activation, pointing to the existence of selective agonists that would allow differential release of selected chemokines.
Journal of Biological Chemistry | 2011
Astri Jeanette Meen; Inger Øynebråten; Trine M. Reine; Annette Duelli; Katja Svennevig; Gunnar Pejler; Trond Jenssen; Svein Olav Kolset
Proteoglycan (PG) expression was studied in primary human umbilical vein endothelial cells (HUVEC). RT-PCR analyses showed that the expression of the PG serglycin core protein was much higher than that of the extracellular matrix PG decorin and the cell surface PG syndecan-1. PG biosynthesis was further studied by biosynthetic [35S]sulfate labeling of polarized HUVEC. Interestingly, a major part of 35S-PGs was secreted to the apical medium. A large portion of these PGs was trypsin-resistant, a typical feature of serglycin. The trypsin-resistant PGs were mainly of the chondroitin/dermatan sulfate type but also contained a minor heparan sulfate component. Secreted serglycin was identified by immunoprecipitation as a PG with a core protein of ∼30 kDa. Serglycin was furthermore shown to be present in perinuclear regions and in two distinct types of vesicles throughout the cytoplasm using immunocytochemistry. To search for possible serglycin partner molecules, HUVEC were stained for the chemokine growth-related oncogene α (GROα/CXCL1). Co-localization with serglycin could be demonstrated, although not in all vesicles. Serglycin did not show overt co-localization with tissue-type plasminogen activator-positive vesicles. When PG biosynthesis was abrogated using benzyl-β-d-xyloside, serglycin secretion was decreased, and the number of vesicles with co-localized serglycin and GROα was reduced. The level of GROα in the apical medium was also reduced after xyloside treatment. Together, these findings indicate that serglycin is a major PG in human endothelial cells, mainly secreted to the apical medium and implicated in chemokine secretion.
Journal of Immunology | 2005
Shuo-Wang Qiao; Justin L. Piper; Guttorm Haraldsen; Inger Øynebråten; Burkhard Fleckenstein; Øyvind Molberg; Chaitan Khosla; Ludvig M. Sollid
Celiac disease is an HLA-DQ2-associated disorder characterized by an intestinal T cell response. The disease-relevant T cells secrete IFN-γ upon recognition of gluten peptides that have been deamidated in vivo by the enzyme tissue transglutaminase (transglutaminase 2 (TG2)). The celiac intestinal mucosa contains elevated numbers of mast cells, and increased histamine secretion has been reported in celiac patients. This appears paradoxical because histamine typically biases T cell responses in the direction of Th2 instead of the Th1 pattern seen in the celiac lesions. We report that histamine is an excellent substrate for TG2, and it can be efficiently conjugated to gluten peptides through TG2-mediated transamidation. Histamine-peptide conjugates do not exert agonistic effects on histamine receptors, and scavenging of biologically active histamine by gluten peptide conjugation can have physiological implications and may contribute to the mucosal IFN-γ response in active disease. Interestingly, TG2 is able to hydrolyze the peptide-histamine conjugates when the concentrations of substrates are lowered, thereby releasing deamidated gluten peptides that are stimulatory to T cells.
Journal of Biological Chemistry | 2009
Johanna Hol; Axel M. Küchler; Finn-Eirik Johansen; Bjørn Dalhus; Guttorm Haraldsen; Inger Øynebråten
Sorting of proteins to Weibel-Palade bodies (WPB) of endothelial cells allows rapid regulated secretion of leukocyte-recruiting P-selectin and chemokines as well as procoagulant von Willebrand factor (VWF). Here we show by domain swap studies that the exposed aspartic acid in loop 2 (Ser44-Asp45-Gly46) of the CXC chemokine interleukin (IL)-8 is crucial for targeting to WPB. Loop 2 also governs sorting of chemokines to α-granules of platelets, but the fingerprint of the loop 2 of these chemokines differs from that of IL-8. On the other hand, loop 2 of IL-8 closely resembles a surface-exposed sequence of the VWF propeptide, the region of VWF that directs sorting of the protein to WPB. We conclude that loop 2 of IL-8 constitutes a critical signal for sorting to WPB and propose a general role for this loop in the sorting of chemokines to compartments of regulated secretion.
Scandinavian Journal of Immunology | 2012
Inger Øynebråten; T.‐O. Løvås; Keith M. Thompson; Bjarne Bogen
The standard protocol for generating antibody (Ab)‐producing hybridomas is based on fusion of plasmacytoma cells with Ab‐producing B cells harvested from immunized mice. To increase the yield of hybridomas, it is important to use immunization protocols that induce a high frequency of B cells producing specific Abs. Our laboratory has developed a vaccine format, denoted vaccibody that promotes the immune responses towards the delivered antigen. The vaccine format targets antigens in a bivalent form to surface receptors on antigen‐presenting cells (APCs). Here, we used the fluorescent protein (FP) mCherry as antigen and targeted it to APCs by use of either the natural ligand CCL3/MIP‐1α or single‐chain variable fragment specific for major histocompatibility complex class II. The vaccine format was delivered to mouse muscle as DNA combined with electroporation. By this procedure, we developed two monoclonal Abs that can be utilized to detect the FC mCherry in various applications. The data suggest that the targeted DNA vaccine format can be utilized to enhance the number of Ab‐producing hybridomas and thereby be a tool to improve the B cell hybridoma technology.
Microbial Cell Factories | 2015
Katarzyna Kuczkowska; Geir Mathiesen; Vincent G. H. Eijsink; Inger Øynebråten
BackgroundChemokines are attractive candidates for vaccine adjuvants due to their ability to recruit the immune cells. Lactic acid bacteria (LAB)-based delivery vehicles have potential to be used as a cheap and safe option for vaccination. Chemokine produced on the surface of LAB may potentially enhance the immune response to an antigen and this approach can be considered in development of future mucosal vaccines.ResultsWe have constructed strains of Lactobacillusplantarum displaying a chemokine on their surface. L. plantarum was genetically engineered to express and anchor to the surface a protein called CCL3Gag. CCL3Gag is a fusion protein comprising of truncated HIV-1 Gag antigen and the murine chemokine CCL3, also known as MIP-1α. Various surface anchoring strategies were explored: (1) a lipobox-based covalent membrane anchor, (2) sortase-mediated covalent cell wall anchoring, (3) LysM-based non-covalent cell wall anchoring, and (4) an N-terminal signal peptide-based transmembrane anchor. Protein production and correct localization were confirmed using Western blotting, flow cytometry and immunofluorescence microscopy. Using a chemotaxis assay, we demonstrated that CCL3Gag-producing L. plantarum strains are able to recruit immune cells in vitro.ConclusionsThe results show the ability of engineered L. plantarum to produce a functional chemotactic protein immobilized on the bacterial surface. We observed that the activity of surface-displayed CCL3Gag differed depending on the type of anchor used. The chemokine which is a part of the bacteria-based vaccine may increase the recruitment of immune cells and, thereby, enhance the reaction of the immune system to the vaccine.
Frontiers in Immunology | 2017
Elisabeth Müller; Panagiotis F. Christopoulos; Sanjib Halder; Anna Lunde; Kahsai Beraki; Martin Speth; Inger Øynebråten; Alexandre Corthay
Tumor-associated macrophages may either promote or suppress tumor growth depending on their activation status. Interferon-γ (IFN-γ) has been identified as a key factor for inducing tumoricidal M1 phenotype in macrophages. However, it remains unclear whether IFN-γ is sufficient or if additional stimuli are required. Here, we tested IFN-γ and a panel of toll-like receptor (TLR) agonists for the ability to activate murine macrophages toward a tumoricidal M1 phenotype. The following TLR ligands were used: TLR1/TLR2 agonist Pam3CSK4, TLR2/TLR6 agonist lipotechoic acid, TLR3 agonist poly(I:C), TLR4 agonist lipopolysaccharide (LPS), TLR5 agonist flagellin, TLR7 agonist CL264, and TLR9 agonist CpG. We used an in vitro growth inhibition assay to measure both cytotoxic and cytostatic activity of mouse macrophages against Lewis lung carcinoma (LLC) and MOPC315 plasmacytoma tumor cells. Production of nitric oxide (NO) and cytokines by activated macrophages was quantified. We found that IFN-γ alone was not able to render macrophages tumoricidal. Similarly, macrophage activation with single TLR agonists was inefficient. In sharp contrast, IFN-γ was shown to synergize with TLR agonists for induction of macrophage tumoricidal activity and production of both NO and pro-inflammatory cytokines (TNF-α, IL-12p40, and IL-12p70). Furthermore, IFN-γ was shown to suppress macrophage IL-10 secretion induced by TLR agonists. NO production was necessary for macrophage tumoricidal activity. We conclude that two signals from the microenvironment are required for optimal induction of antitumor M1 macrophage phenotype. Combination treatment with IFN-γ and TLR agonists may offer new avenues for macrophage-based cancer immunotherapy.
Frontiers in Immunology | 2016
Aram Nikolai Andersen; Ole J.B. Landsverk; Anne Simonsen; Bjarne Bogen; Alexandre Corthay; Inger Øynebråten
Vaccines aiming to promote T-cell-mediated immune responses have so far showed limited efficacy, and there is a need for novel strategies. Studies indicate that autophagy plays an inherent role in antigen processing and presentation for CD4+ and CD8+ T cells. Here, we report a novel vaccine strategy based on fusion of antigen to the selective autophagy receptor sequestosome 1 (SQSTM1)/p62. We hypothesized that redirection of vaccine antigen from proteasomal degradation into the autophagy pathway would increase the generation of antigen-specific T cells. A hybrid vaccine construct was designed in which the antigen is fused to the C-terminus of p62, a signaling hub, and a receptor that naturally delivers ubiquitinated cargo for autophagic degradation. Fusion of the human immunodeficiency virus-1 antigen Gagp24 to p62 resulted in efficient antigen delivery into the autophagy pathway. Intradermal immunization of mice revealed that, in comparison to Gagp24 delivered alone, fusion to p62 enhanced the number of Gagp24-specific interferon-γ-producing T cells, including CD8+ T cells. The strategy may also have the potential to modulate the antigenic peptide repertoire. Because p62 and autophagy are highly conserved between species, we anticipate this strategy to be a candidate for the development of T-cell-based vaccines in humans.
Scientific Reports | 2015
Inger Øynebråten; Nicolas Barois; Trygve Bergeland; Axel M. Küchler; Oddmund Bakke; Guttorm Haraldsen
Vascular endothelial cells present luminal chemokines that arrest rolling leukocytes by activating integrins. It appears that several chemokines must form higher-order oligomers to elicit proper in vivo effects, as mutants restricted to forming dimers have lost the ability to recruit leukocytes to sites of inflammation. Here, we show for the first time that the chemokine RANTES/CCL5 binds to the surface of human endothelial cells in a regular filamentous pattern. Furthermore, the filaments bound to the surface in a heparan sulfate-dependent manner. By electron microscopy we observed labeling for RANTES on membrane projections as well as on the remaining plasma membrane. Mutant constructs of RANTES restricted either in binding to heparin, or in forming dimers or tetramers, appeared either in a granular, non-filamentous pattern or were not detectable on the cell surface. The RANTES filaments were also present after exposure to flow, suggesting that they can be present in vivo. Taken together with the lacking in vivo or in vitro effects of RANTES mutants, we suggest that the filamentous structures of RANTES may be of physiological importance in leukocyte recruitment.
PLOS ONE | 2014
Tom-Ole Løvås; Jo C. Bruusgaard; Inger Øynebråten; Kristian Gundersen; Bjarne Bogen
Vaccination with naked DNA holds great promise but immunogenicity needs to be improved. DNA constructs encoding bivalent proteins that bind antigen-presenting cells (APC) for delivery of antigen have been shown to enhance T and B cell responses and protection in tumour challenge experiments. However, the mechanism for the increased potency remains to be determined. Here we have constructed DNA vaccines that express the fluorescent protein mCherry, a strategy which allowed tracking of vaccine proteins. Transfected muscle fibres in mice were visualized, and their relationship to infiltrating mononuclear cells could be determined. Interestingly, muscle fibers that produced MHC class II-specific dimeric vaccine proteins with mCherry were for weeks surrounded by a localized intense cellular infiltrate composed of CD45+, MHC class II+ and CD11b+ cells. Increasing numbers of eosinophils were observed among the infiltrating cells from day 7 after immunization. The local infiltrate surrounding mCherry+ muscle fibers was dependent on the MHC II-specificity of the vaccine proteins since the control, a non-targeted vaccine protein, failed to induce similar infiltrates. Chemokines measured on day 3 in immunized muscle indicate both a DNA effect and an electroporation effect. No influence of targeting was observed. These results contribute to our understanding for why targeted DNA vaccines have an improved immunogenicity.