Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingibjörg S. Jónsdóttir is active.

Publication


Featured researches published by Ingibjörg S. Jónsdóttir.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Plant community responses to experimental warming across the tundra biome

Marilyn D. Walker; C. Henrik Wahren; Robert D. Hollister; Greg H. R. Henry; Lorraine E. Ahlquist; Juha M. Alatalo; M. Syndonia Bret-Harte; Monika P. Calef; Terry V. Callaghan; Amy B. Carroll; Howard E. Epstein; Ingibjörg S. Jónsdóttir; Julia A. Klein; Borgb̧ór Magnússon; Ulf Molau; Steven F. Oberbauer; Steven P. Rewa; Clare H. Robinson; Gaius R. Shaver; Katharine N. Suding; Catharine C. Thompson; Anne Tolvanen; Ørjan Totland; P. Lee Turner; Craig E. Tweedie; Patrick J. Webber; Philip A. Wookey

Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3°C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere.


Ecological Monographs | 1999

Responses of tundra plants to experimental warming : Meta-analysis of the international tundra experiment

A. M. Arft; Marilyn D. Walker; J. Gurevitch; Juha M. Alatalo; M. S. Bret-Harte; M. Dale; M. Diemer; F. Gugerli; Gregory H. R. Henry; M. H. Jones; Robert D. Hollister; Ingibjörg S. Jónsdóttir; Kari Laine; Esther Lévesque; G. M. Marion; Ulf Molau; P. Mølgaard; Urban Nordenhäll; V. Raszhivin; Clare H. Robinson; Gregory Starr; Anna Stenström; Mikael Stenström; Ørjan Totland; P. L. Turner; L. J. Walker; Patrick J. Webber; Jeffrey M. Welker; P. A. Wookey

The International Tundra Experiment (ITEX) is a collaborative, multisite experiment using a common temperature manipulation to examine variability in species response across climatic and geographic gradients of tundra ecosystems. ITEX was designed specifically to examine variability in arctic and alpine species response to increased temperature. We compiled from one to four years of experimental data from 13 different ITEX sites and used meta-analysis to analyze responses of plant phenology, growth, and reproduction to experimental warming. Results indicate that key phenological events such as leaf bud burst and flowering occurred earlier in warmed plots throughout the study period; however, there was little impact on growth cessation at the end of the season. Quantitative measures of vegetative growth were greatest in warmed plots in the early years of the experiment, whereas reproductive effort and success increased in later years. A shift away from vegetative growth and toward reproductive effort and success in the fourth treatment year suggests a shift from the initial response to a secondary response. The change in vegetative response may be due to depletion of stored plant reserves, whereas the lag in reproductive response may be due to the formation of flower buds one to several seasons prior to flowering. Both vegetative and reproductive responses varied among life-forms; herbaceous forms had stronger and more consistent vegetative growth responses than did woody forms. The greater responsiveness of the herbaceous forms may be attributed to their more flexible morphology and to their relatively greater proportion of stored plant reserves. Finally, warmer, low arctic sites produced the strongest growth responses, but colder sites produced a greater reproductive response. Greater resource investment in vegetative growth may be a conservative strategy in the Low Arctic, where there is more competition for light, nutrients, or water, and there may be little opportunity for successful germination or seedling development. In contrast, in the High Arctic, heavy investment in producing seed under a higher temperature scenario may provide an opportunity for species to colonize patches of unvegetated ground. The observed differential response to warming suggests that the primary forces driving the response vary across climatic zones, functional groups, and through time.


Nature Climate Change | 2012

Plot-scale evidence of tundra vegetation change and links to recent summer warming

Sarah C. Elmendorf; Gregory H. R. Henry; Robert D. Hollister; Robert G. Björk; Noémie Boulanger-Lapointe; Elisabeth J. Cooper; Johannes H. C. Cornelissen; Thomas A. Day; Ellen Dorrepaal; Tatiana G. Elumeeva; Mike Gill; William A. Gould; John Harte; David S. Hik; Annika Hofgaard; David R. Johnson; Jill F. Johnstone; Ingibjörg S. Jónsdóttir; Janet C. Jorgenson; Kari Klanderud; Julia A. Klein; Saewan Koh; Gaku Kudo; Mark Lara; Esther Lévesque; Borgthor Magnusson; Jeremy L. May; Joel A. Mercado-Díaz; Anders Michelsen; Ulf Molau

Temperature is increasing at unprecedented rates across most of the tundra biome(1). Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity ov ...


Scientific Reports | 2012

Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland

Magnús T. Gudmundsson; Thorvaldur Thordarson; Ármann Höskuldsson; Gudrún Larsen; Halldór Björnsson; Fred Prata; Björn Oddsson; Eyjólfur Magnússon; Thórdís Högnadóttir; Guðrún Nína Petersen; Chris Hayward; John A. Stevenson; Ingibjörg S. Jónsdóttir

The 39-day long eruption at the summit of Eyjafjallajökull volcano in April–May 2010 was of modest size but ash was widely dispersed. By combining data from ground surveys and remote sensing we show that the erupted material was 4.8±1.2·1011 kg (benmoreite and trachyte, dense rock equivalent volume 0.18±0.05 km3). About 20% was lava and water-transported tephra, 80% was airborne tephra (bulk volume 0.27 km3) transported by 3–10 km high plumes. The airborne tephra was mostly fine ash (diameter <1000 µm). At least 7·1010 kg (70 Tg) was very fine ash (<28 µm), several times more than previously estimated via satellite retrievals. About 50% of the tephra fell in Iceland with the remainder carried towards south and east, detected over ~7 million km2 in Europe and the North Atlantic. Of order 1010 kg (2%) are considered to have been transported longer than 600–700 km with <108 kg (<0.02%) reaching mainland Europe.


Oikos | 1992

Clonal plants and environmental change : Introduction to the proceedings and summary

Terry V. Callaghan; Bengt Carlsson; Ingibjörg S. Jónsdóttir; Brita M. Svensson; Sven Jonasson

Clonal growth is an important attribute of many groups of plants and animals (White 1979, Harper et al. 1986). In the plant kingdom, phyla from all evolutionary levels show the capacity for clonal growth. The ability to proliferate vegetatively is found within 10 out of 11 classes of vascular plants and within all seven classes with extant representatives, although rare within the Gymnospermopsida (Mogie and Hutchings 1990), and 69 out of 163 families of vascular plants are able to proliferate vegetatively (Tiffney and Nicklas 1985). The importance of clonal growth in temperate and more northerly ecosystems is apparent when the ground area covered by clonal plants is estimated. In the Arctic, 0.9 x 106 km2 of land is covered by Eriophorum vaginatum (Miller 1982) which is a caespitose clonal plant, where recruitment from seedlings depends on small and large scale disturbances in the vegetation (Gartner et al. 1986). In Britain, the most productive natural/seminatural vegetation is dominated by clonal plants such as Phragmites communes and Pteridium aquilinum (Callaghan et al. 1981), while infertile areas are also dominated by clonal plants such as Calluna vulgaris and Nardus stricta (Bunce and Barr 1988). The area of Britain is 230000 km2 and 19% of this is covered by Britains ten most extensive species which are all clonal (Table 1; Bunce and Barr 1988). In temperate and boreal forests, clonally proliferating species such as Vaccinium and Empetrum species and Deschampsia flexuosa are also abundant.


Journal of Ecology | 1996

Clonal diversity and allozyme variation in populations of the arctic sedge Carex bigelowii (Cyperaceae).

B O Jonsson; Ingibjörg S. Jónsdóttir; Nils Cronberg

1 A study of allozyme variation in vegetatively propagating populations of the rhizomatous sedge Carex bigelowii, revealed high levels of clonal diversity (genet diversity) within populations. The structure of allelic variation within the populations suggests that sexual reproduction has played a significant role in these C. bigelowii populations, despite present lack of seedling recruitment. The study was carried out in moss-heath communities on Icelandic lava-fields. Two adjacent populations were studied at one site, while a third population was studied at a second site, 35 km away from the first two populations. 2 The number of genets detected in each population, among 85-88 analysed ramets, ranged from 41 to 55 (minimum estimate). Samples were taken every 4 m along transects in the populations. Ramets with the same allozyme genotype were often spatially aggregated. No seedlings have been observed in the populations during five years of demographic studies. 3 All the populations studied showed a diploid expression of allozymes and high levels of allelic variation, with on average 491.77 alleles per locus (A) and an allelic diversity (HS) of 0.167. Similar levels of within-population variability are found in many wind-pollinated and outcrossing plant species. 4 The difference between observed and expected heterozygosity was small in all populations, suggesting high levels of outbreeding. 5 Comparisons with other Carex taxa show that the levels of and structuring of allozyme diversity in C. bigelowii is similar to that in other outbreeding species (usually rhizomatous), and much higher than in inbreeding species (which are usually caespitose). 6 Only 5the total allelic diversity was explained by differences between the two study sites (G ST = 0.055), suggesting extensive recent or historic gene-flow. (Less)


Oikos | 1988

Interrelationships between different generations of interconnected tillers of Carex bigelowii

Ingibjörg S. Jónsdóttir; Terry V. Callaghan

Interrelationships between different generations of interconnected tillers of Carex bigelowii.


AMBIO: A Journal of the Human Environment | 2004

Responses to projected changes in climate and UV-B at the species level

Terry V. Callaghan; Lars Olof Björn; Yuri Chernov; Terry Chapin; Torben R. Christensen; Brian Huntley; Rolf A. Ims; Margareta Johansson; Dyanna Jolly; Sven Jonasson; Nadya Matveyeva; Nicolai Panikov; Walter C. Oechel; Gus Shaver; Josef Elster; Ingibjörg S. Jónsdóttir; Kari Laine; Kari Taulavuori; Erja Taulavuori; Christoph Zöckler

Abstract Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to fiee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and “new” species of insects and birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species–climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.


Canadian Journal of Zoology | 2003

Terrestrial trophic dynamics in the Canadian Arctic

Charles J. Krebs; Kjell Danell; Anders Angerbjörn; Jep Agrell; Dominique Berteaux; Kari Anne Bråthen; Öje Danell; Sam Erlinge; Vadim Fedorov; Karl Fredga; Joakim Hjältén; Göran Högstedt; Ingibjörg S. Jónsdóttir; Alice J. Kenney; Nils Kjellén; Torgny Nordin; Heikki Roininen; Mikael Svensson; Magnus Tannerfeldt; Christer Wiklund

The Swedish Tundra Northwest Expedition of 1999 visited 17 sites throughout the Canadian Arctic. At 12 sites that were intensively sampled we estimated the standing crop of plants and the densities of herbivores and predators with an array of trapping, visual surveys, and faecal-pellet transects. We developed a trophic-balance model using ECOPATH to integrate these observations and determine the fate of primary and secondary production in these tundra ecosystems, which spanned an 8-fold range of standing crop of plants. We estimated that about 13% of net primary production was consumed by herbivores, while over 70% of small-herbivore production was estimated to flow to predators. Only 9% of large-herbivore production was consumed by predators. Organization of Canadian Arctic ecosystems appears to be more top-down than bottom-up. Net primary production does not seem to be herbivore-limited at any site. This is the first attempt to integrate trophic dynamics over the entire Canadian Arctic.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns

Sarah C. Elmendorf; Gregory H. R. Henry; Robert D. Hollister; Anna Maria Fosaa; William A. Gould; Luise Hermanutz; Annika Hofgaard; Ingibjörg S. Jónsdóttir; Janet C. Jorgenson; Esther Lévesque; Borgþór Magnússon; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Christian Rixen; Craig E. Tweedie; Marilyn D. Walker

Significance Methodological constraints can limit our ability to quantify potential impacts of climate warming. We assessed the consistency of three approaches in estimating warming effects on plant community composition: manipulative warming experiments, repeat sampling under ambient temperature change (monitoring), and space-for-time substitution. The three approaches showed agreement in the direction of change (an increase in the relative abundance of species with a warmer thermal niche), but differed in the magnitude of change estimated. Experimental and monitoring approaches were similar in magnitude, whereas space-for-time comparisons indicated a much stronger response. These results suggest that all three approaches are valid, but experimental warming and long-term monitoring are best suited for forecasting impacts over the coming decades. Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming.

Collaboration


Dive into the Ingibjörg S. Jónsdóttir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert D. Hollister

Grand Valley State University

View shared research outputs
Top Co-Authors

Avatar

Ulf Molau

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther Lévesque

Université du Québec à Trois-Rivières

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annika Hofgaard

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge