Ingo Bojak
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ingo Bojak.
The Journal of Neuroscience | 2011
René Scheeringa; Ali Mazaheri; Ingo Bojak; David G. Norris; Andreas Kleinschmidt
Using simultaneous electroencephalography as a measure of ongoing activity and functional magnetic resonance imaging (fMRI) as a measure of the stimulus-driven neural response, we examined whether the amplitude and phase of occipital alpha oscillations at the onset of a brief visual stimulus affects the amplitude of the visually evoked fMRI response. When accounting for intrinsic coupling of alpha amplitude and occipital fMRI signal by modeling and subtracting pseudo-trials, no significant effect of prestimulus alpha amplitude on the evoked fMRI response could be demonstrated. Regarding the effect of alpha phase, we found that stimuli arriving at the peak of the alpha cycle yielded a lower blood oxygenation level-dependent (BOLD) fMRI response in early visual cortex (V1/V2) than stimuli presented at the trough of the cycle. Our results therefore show that phase of occipital alpha oscillations impacts the overall strength of a visually evoked response, as indexed by the BOLD signal. This observation complements existing evidence that alpha oscillations reflect periodic variations in cortical excitability and suggests that the phase of oscillations in postsynaptic potentials can serve as a mechanism of gain control for incoming neural activity. Finally, our findings provide a putative neural basis for observations of alpha phase dependence of visual perceptual performance.
Brain Topography | 2010
Ingo Bojak; Thom F. Oostendorp; Andrew T. Reid; Rolf Kötter
Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially. We demonstrate here that a mean field model of brain activity can simultaneously predict EEG and fMRI BOLD with proper signal generation and expression. Simulations are shown using a realistic head model based on structural MRI, which includes both dense short-range background connectivity and long-range specific connectivity between brain regions. The distribution of modeled neural masses is comparable to the spatial resolution of fMRI BOLD, and the temporal resolution of the modeled dynamics, importantly including activity conduction, matches the fastest known EEG phenomena. The creation of a cortical mean field model with anatomically sound geometry, extensive connectivity, and proper signal expression is an important first step towards the model-based integration of multimodal neuroimages.
PLOS Computational Biology | 2010
Ingo Bojak; David T. J. Liley
By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.
Cognitive Neurodynamics | 2008
Brett L. Foster; Ingo Bojak; David T. J. Liley
A great explanatory gap lies between the molecular pharmacology of psychoactive agents and the neurophysiological changes they induce, as recorded by neuroimaging modalities. Causally relating the cellular actions of psychoactive compounds to their influence on population activity is experimentally challenging. Recent developments in the dynamical modelling of neural tissue have attempted to span this explanatory gap between microscopic targets and their macroscopic neurophysiological effects via a range of biologically plausible dynamical models of cortical tissue. Such theoretical models allow exploration of neural dynamics, in particular their modification by drug action. The ability to theoretically bridge scales is due to a biologically plausible averaging of cortical tissue properties. In the resulting macroscopic neural field, individual neurons need not be explicitly represented (as in neural networks). The following paper aims to provide a non-technical introduction to the mean field population modelling of drug action and its recent successes in modelling anaesthesia.
Philosophical Transactions of the Royal Society A | 2011
Ingo Bojak; Thom F. Oostendorp; Andrew T. Reid; Rolf Kötter
Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration can prove problematic owing to the disparate signal sources. As an alternative, we propose here an advanced neural population model implemented on an anatomically sound cortical mesh with freely adjustable connectivity, which features proper signal expression through a realistic head model for the electroencephalogram (EEG), as well as a haemodynamic model for functional magnetic resonance imaging based on blood oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic predictions of EEG and fMRI BOLD from the same underlying model of neural activity. As proof of principle, we investigate here the influence on simulated brain activity of strengthening visual connectivity. In the future we plan to fit multimodal data with this neural population model. This promises novel, model-based insights into the brains activity in sleep, rest and task conditions.
Journal of Mathematical Neuroscience | 2012
Stephen Coombes; Helmut Schmidt; Ingo Bojak
Neural field models describe the coarse-grained activity of populations of interacting neurons. Because of the laminar structure of real cortical tissue they are often studied in two spatial dimensions, where they are well known to generate rich patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of contexts ranging from the understanding of visual hallucinations to the generation of electroencephalographic signals. Typical patterns include localized solutions in the form of traveling spots, as well as intricate labyrinthine structures. These patterns are naturally defined by the interface between low and high states of neural activity. Here we derive the equations of motion for such interfaces and show, for a Heaviside firing rate, that the normal velocity of an interface is given in terms of a non-local Biot-Savart type interaction over the boundaries of the high activity regions. This exact, but dimensionally reduced, system of equations is solved numerically and shown to be in excellent agreement with the full nonlinear integral equation defining the neural field. We develop a linear stability analysis for the interface dynamics that allows us to understand the mechanisms of pattern formation that arise from instabilities of spots, rings, stripes and fronts. We further show how to analyze neural field models with linear adaptation currents, and determine the conditions for the dynamic instability of spots that can give rise to breathers and traveling waves.
Neurocomputing | 2007
Ingo Bojak; David T. J. Liley
We present evidence that large-scale spatial coherence of 40Hz oscillations can emerge dynamically in a cortical mean field theory. The simulated synchronization time scale is about 150ms, which compares well with experimental data on large-scale integration during cognitive tasks. The same model has previously provided consistent descriptions of the human EEG at rest, with tranquilizers, under anesthesia, and during anesthetic-induced epileptic seizures. The emergence of coherent gamma band activity is brought about by changing just one physiological parameter until cortex becomes marginally unstable for a small range of wavelengths. This suggests for future study a model of dynamic computation at the edge of cortical stability.
Physics Letters B | 1998
Ingo Bojak; M. Stratmann
Abstract We present a calculation of the next-to-leading order ( O (α s 2 α)) QCD corrections to heavy flavor photoproduction with longitudinally polarized beams. We apply our results to study the longitudinal spin asymmetry for the total charm quark production cross section which will be utilized by the forthcoming COMPASS experiment at CERN to obtain first direct information on the polarized gluon density Δg . We also briefly discuss the main theoretical uncertainties inherent in this calculation. In particular we demonstrate that the factorization scale dependence is considerably reduced in next-to-leading order.
Frontiers in Computational Neuroscience | 2013
Ingo Bojak; Harry C. Day; David T. J. Liley
Ketamine and propofol are two well-known, powerful anesthetic agents, yet at first sight this appears to be their only commonality. Ketamine is a dissociative anesthetic agent, whose main mechanism of action is considered to be N-methyl-d-aspartate (NMDA) antagonism; whereas propofol is a general anesthetic agent, which is assumed to primarily potentiate currents gated by γ-aminobutyric acid type A (GABAA) receptors. However, several experimental observations suggest a closer relationship. First, the effect of ketamine on the electroencephalogram (EEG) is markedly changed in the presence of propofol: on its own ketamine increases θ (4–8 Hz) and decreases α (8–13 Hz) oscillations, whereas ketamine induces a significant shift to beta band frequencies (13–30 Hz) in the presence of propofol. Second, both ketamine and propofol cause inhibition of the inward pacemaker current Ih, by binding to the corresponding hyperpolarization-activated cyclic nucleotide-gated potassium channel 1 (HCN1) subunit. The resulting effect is a hyperpolarization of the neuron’s resting membrane potential. Third, the ability of both ketamine and propofol to induce hypnosis is reduced in HCN1-knockout mice. Here we show that one can theoretically understand the observed spectral changes of the EEG based on HCN1-mediated hyperpolarizations alone, without involving the supposed main mechanisms of action of these drugs through NMDA and GABAA, respectively. On the basis of our successful EEG model we conclude that ketamine and propofol should be antagonistic to each other in their interaction at HCN1 subunits. Such a prediction is in accord with the results of clinical experiment in which it is found that ketamine and propofol interact in an infra-additive manner with respect to the endpoints of hypnosis and immobility.
Frontiers in Computational Neuroscience | 2012
Atthaphon Viriyopase; Ingo Bojak; Magteld Zeitler; Stan C. A. M. Gielen
Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14–30 and 40–80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, such as for neuronal communication, attention, memory, and feature binding. However, recent studies using recordings of single-unit activity and local field potentials report that neuronal synchronization may occur with non-zero phase lags. This raises the questions whether zero-lag synchrony can occur in the brain and, if so, under which conditions. We used analytical methods and computer simulations to investigate which connectivity between neuronal populations allows or prohibits zero-lag synchrony. We did so for a model where two oscillators interact via a relay oscillator. Analytical results and computer simulations were obtained for both type I Mirollo–Strogatz neurons and type II Hodgkin–Huxley neurons. We have investigated the dynamics of the model for various types of synaptic coupling and importantly considered the potential impact of Spike-Timing Dependent Plasticity (STDP) and its learning window. We confirm previous results that zero-lag synchrony can be achieved in this configuration. This is much easier to achieve with Hodgkin–Huxley neurons, which have a biphasic phase response curve, than for type I neurons. STDP facilitates zero-lag synchrony as it adjusts the synaptic strengths such that zero-lag synchrony is feasible for a much larger range of parameters than without STDP.