Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingo Grafe is active.

Publication


Featured researches published by Ingo Grafe.


Journal of Bone and Mineral Research | 2011

Mutations in SERPINF1 cause osteogenesis imperfecta type VI

Erica P. Homan; Frank Rauch; Ingo Grafe; Caressa Lietman; Jennifer A. Doll; Brian Dawson; Terry Bertin; Dobrawa Napierala; Roy Morello; Richard A. Gibbs; Lisa D. White; Rika Miki; Daniel H. Cohn; Susan E. Crawford; Rose Travers; Francis H. Glorieux; Brendan Lee

Osteogenesis imperfecta (OI) is a spectrum of genetic disorders characterized by bone fragility. It is caused by dominant mutations affecting the synthesis and/or structure of type I procollagen or by recessively inherited mutations in genes responsible for the posttranslational processing/trafficking of type I procollagen. Recessive OI type VI is unique among OI types in that it is characterized by an increased amount of unmineralized osteoid, thereby suggesting a distinct disease mechanism. In a large consanguineous family with OI type VI, we performed homozygosity mapping and next‐generation sequencing of the candidate gene region to isolate and identify the causative gene. We describe loss of function mutations in serpin peptidase inhibitor, clade F, member 1 (SERPINF1) in two affected members of this family and in an additional unrelated patient with OI type VI. SERPINF1 encodes pigment epithelium–derived factor. Hence, loss of pigment epithelium–derived factor function constitutes a novel mechanism for OI and shows its involvement in bone mineralization.


Nature Medicine | 2014

Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta

Ingo Grafe; Tao Yang; Stefanie Alexander; Erica P. Homan; Caressa Lietman; Ming Ming Jiang; Terry Bertin; Elda Munivez; Yuqing Chen; Brian Dawson; Yoshihiro Ishikawa; Mary Ann Weis; T. Kuber Sampath; Catherine G. Ambrose; David R. Eyre; Hans Peter Bächinger; Brendan Lee

Osteogenesis imperfecta (OI) is a heritable disorder, in both a dominant and recessive manner, of connective tissue characterized by brittle bones, fractures and extraskeletal manifestations. How structural mutations of type I collagen (dominant OI) or of its post-translational modification machinery (recessive OI) can cause abnormal quality and quantity of bone is poorly understood. Notably, the clinical overlap between dominant and recessive forms of OI suggests common molecular pathomechanisms. Here, we show that excessive transforming growth factor-β (TGF-β) signaling is a mechanism of OI in both recessive (Crtap−/−) and dominant (Col1a2tm1.1Mcbr) OI mouse models. In the skeleton, we find higher expression of TGF-β target genes, higher ratio of phosphorylated Smad2 to total Smad2 protein and higher in vivo Smad2 reporter activity. Moreover, the type I collagen of Crtap−/− mice shows reduced binding to the small leucine-rich proteoglycan decorin, a known regulator of TGF-β activity. Anti–TGF-β treatment using the neutralizing antibody 1D11 corrects the bone phenotype in both forms of OI and improves the lung abnormalities in Crtap−/− mice. Hence, altered TGF-β matrix-cell signaling is a primary mechanism in the pathogenesis of OI and could be a promising target for the treatment of OI.


Journal of Bone and Mineral Research | 2016

Sclerostin Antibody Treatment Improves the Bone Phenotype of Crtap(-/-) Mice, a Model of Recessive Osteogenesis Imperfecta.

Ingo Grafe; Stefanie Alexander; Tao Yang; Caressa Lietman; Erica P. Homan; Elda Munivez; Yuqing Chen; Ming Ming Jiang; Terry Bertin; Brian Dawson; Franklin J. Asuncion; Hua Zhu Ke; Michael S. Ominsky; Brendan Lee

Osteogenesis imperfecta (OI) is characterized by low bone mass, poor bone quality, and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin‐neutralizing antibodies (Scl‐Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl‐Ab treatment has not been studied in models of recessive OI. Cartilage‐associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1‐week‐old and 6‐week‐old Crtap–/– mice with Scl‐Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of “pediatric” and “young adult” recessive OI. Vehicle‐treated Crtap–/– and wild‐type (WT) mice served as controls. Compared with control Crtap–/– mice, micro–computed tomography (μCT) analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl‐Ab–treated Crtap–/– mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl‐Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl‐Ab improved parameters of whole‐bone strength in Crtap–/– mice, with more robust effects in the week 6 to 12 cohort, but did not affect the increased bone brittleness. Additionally, Scl‐Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6 to 12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl‐Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen posttranslational modification.


PLOS Genetics | 2014

Differential Effects of Collagen Prolyl 3-Hydroxylation on Skeletal Tissues

Erica P. Homan; Caressa Lietman; Ingo Grafe; Jennifer Lennington; Roy Morello; Dobrawa Napierala; Ming Ming Jiang; Elda Munivez; Brian Dawson; Terry Bertin; Yuqing Chen; Rhonald C. Lua; Olivier Lichtarge; John Hicks; Mary Ann Weis; David R. Eyre; Brendan Lee

Mutations in the genes encoding cartilage associated protein (CRTAP) and prolyl 3-hydroxylase 1 (P3H1 encoded by LEPRE1) were the first identified causes of recessive Osteogenesis Imperfecta (OI). These proteins, together with cyclophilin B (encoded by PPIB), form a complex that 3-hydroxylates a single proline residue on the α1(I) chain (Pro986) and has cis/trans isomerase (PPIase) activity essential for proper collagen folding. Recent data suggest that prolyl 3-hydroxylation of Pro986 is not required for the structural stability of collagen; however, the absence of this post-translational modification may disrupt protein-protein interactions integral for proper collagen folding and lead to collagen over-modification. P3H1 and CRTAP stabilize each other and absence of one results in degradation of the other. Hence, hypomorphic or loss of function mutations of either gene cause loss of the whole complex and its associated functions. The relative contribution of losing this complexs 3-hydroxylation versus PPIase and collagen chaperone activities to the phenotype of recessive OI is unknown. To distinguish between these functions, we generated knock-in mice carrying a single amino acid substitution in the catalytic site of P3h1 (Lepre1H662A). This substitution abolished P3h1 activity but retained ability to form a complex with Crtap and thus the collagen chaperone function. Knock-in mice showed absence of prolyl 3-hydroxylation at Pro986 of the α1(I) and α1(II) collagen chains but no significant over-modification at other collagen residues. They were normal in appearance, had no growth defects and normal cartilage growth plate histology but showed decreased trabecular bone mass. This new mouse model recapitulates elements of the bone phenotype of OI but not the cartilage and growth phenotypes caused by loss of the prolyl 3-hydroxylation complex. Our observations suggest differential tissue consequences due to selective inactivation of P3H1 hydroxylase activity versus complete ablation of the prolyl 3-hydroxylation complex.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2016

Pharmacological and biological therapeutic strategies for osteogenesis imperfecta

Ronit Marom; Yi-Chien Lee; Ingo Grafe; Brendan Lee

Osteogenesis imperfecta (OI) is a connective tissue disorder characterized by bone fragility, low bone mass, and bone deformities. The majority of cases are caused by autosomal dominant pathogenic variants in the COL1A1 and COL1A2 genes that encode type I collagen, the major component of the bone matrix. The remaining cases are caused by autosomal recessively or dominantly inherited mutations in genes that are involved in the post‐translational modification of type I collagen, act as type I collagen chaperones, or are members of the signaling pathways that regulate bone homeostasis. The main goals of treatment in OI are to decrease fracture incidence, relieve bone pain, and promote mobility and growth. This requires a multi‐disciplinary approach, utilizing pharmacological interventions, physical therapy, orthopedic surgery, and monitoring nutrition with appropriate calcium and vitamin D supplementation. Bisphosphonate therapy, which has become the mainstay of treatment in OI, has proven beneficial in increasing bone mass, and to some extent reducing fracture risk. However, the response to treatment is not as robust as is seen in osteoporosis, and it seems less effective in certain types of OI, and in adult OI patients as compared to most pediatric cases. New pharmacological treatments are currently being developed, including anti‐resorptive agents, anabolic treatment, and gene‐ and cell‐therapy approaches. These therapies are under different stages of investigation from the bench‐side, to pre‐clinical and clinical trials. In this review, we will summarize the recent findings regarding the pharmacological and biological strategies for the treatment of patients with OI.


Proceedings of the National Academy of Sciences of the United States of America | 2013

E-selectin ligand 1 regulates bone remodeling by limiting bioactive TGF-β in the bone microenvironment

Tao Yang; Ingo Grafe; Yangjin Bae; Shan Chen; Yuqing Chen; Terry Bertin; Ming-Ming Jiang; Catherine G. Ambrose; Brendan Lee

TGF-β is abundantly produced in the skeletal system and plays a crucial role in skeletal homeostasis. E-selectin ligand-1 (ESL-1), a Golgi apparatus-localized protein, acts as a negative regulator of TGF-β bioavailability by attenuating maturation of pro–TGF-β during cartilage homeostasis. However, whether regulation of intracellular TGF-β maturation by ESL-1 is also crucial during bone homeostasis has not been well defined. Here, we show that Esl-1−/− mice exhibit a severe osteopenia with elevated bone resorption and decreased bone mineralization. In primary culture, Esl-1−/− osteoclast progenitors show no difference in osteoclastogenesis. However, Esl-1−/− osteoblasts show delayed differentiation and mineralization and stimulate osteoclastogenesis more potently in the osteoblast–osteoclast coculture, suggesting that ESL-1 primarily acts in osteoblasts to regulate bone homeostasis. In addition, Esl-1−/− calvaria exhibit an elevated mature TGF-β/pro–TGF-β ratio, with increased expression of TGF-β downstream targets (plasminogen activator inhibitor-1, parathyroid hormone-related peptide, connective tissue growth factor, and matrix metallopeptidase 13, etc.) and a key regulator of osteoclastogenesis (receptor activator of nuclear factor κB ligand). Moreover, in vivo treatment with 1D11, a pan–TGF-β antibody, significantly improved the low bone mass of Esl-1−/− mice, suggesting that elevated TGF-β signaling is the major cause of osteopenia in Esl-1−/− mice. In summary, our study identifies ESL-1 as an important regulator of bone remodeling and demonstrates that the modulation of TGF-β maturation is pivotal in the maintenance of a homeostatic bone microenvironment and for proper osteoblast–osteoclast coupling.


Cold Spring Harbor Perspectives in Biology | 2018

TGF-β Family Signaling in Mesenchymal Differentiation

Ingo Grafe; Stefanie Alexander; Jonathan R. Peterson; Taylor Nicholas Snider; Benjamin Levi; Brendan Lee; Yuji Mishina

Mesenchymal stem cells (MSCs) can differentiate into several lineages during development and also contribute to tissue homeostasis and regeneration, although the requirements for both may be distinct. MSC lineage commitment and progression in differentiation are regulated by members of the transforming growth factor-β (TGF-β) family. This review focuses on the roles of TGF-β family signaling in mesenchymal lineage commitment and differentiation into osteoblasts, chondrocytes, myoblasts, adipocytes, and tenocytes. We summarize the reported findings of cell culture studies, animal models, and interactions with other signaling pathways and highlight how aberrations in TGF-β family signaling can drive human disease by affecting mesenchymal differentiation.


Journal of Bone and Mineral Research | 2017

Correlations between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment†

Xiaohong Bi; Ingo Grafe; Hao Ding; Rene Flores; Elda Munivez; Ming Ming Jiang; Brian Dawson; Brendan Lee; Catherine G. Ambrose

Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF‐β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti‐TGF‐β treatment in OI has not been studied. Here, we performed follow‐up analyses of femurs collected in an earlier study from OI mice with and without anti‐TGF‐β treatment from both recessive (Crtap‐/‐) and dominant (Col1a2+/P.G610C) OI mouse models and WT mice. Mechanical properties were determined using three‐point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti‐TGF‐β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2+/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral‐to‐collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in models of OI, identifies key bone compositional parameters that correlate with the impaired mechanical integrity of OI bone, and explores the effects of anti‐TGF‐β treatment on bone‐quality parameters in these models.


Bone | 2017

Genetic causes and mechanisms of Osteogenesis Imperfecta

Joohyun Lim; Ingo Grafe; Stefanie Alexander; Brendan Lee

Osteogenesis Imperfecta (OI) is a genetic disorder characterized by various clinical features including bone deformities, low bone mass, brittle bones, and connective tissue manifestations. The predominant cause of OI is due to mutations in the two genes that encode type I collagen. However, recent advances in sequencing technology has led to the discovery of novel genes that are implicated in recessive and dominant OI. These include genes that regulate the post-translational modification, secretion and processing of type I collagen as well as those required for osteoblast differentiation and bone mineralization. As such, OI has become a spectrum of genetic disorders informing about the determinants of both bone quantity and quality. Here we summarize the known genetic causes of OI, animal models that recapitulate the human disease and mechanisms that underlie disease pathogenesis. Additionally, we discuss the effects of disrupted collagen networks on extracellular matrix signaling and its impact on disease progression.


Journal of Bone and Mineral Research | 2017

Fkbp10 Deletion in Osteoblasts Leads to Qualitative Defects in Bone

Caressa Lietman; Joohyun Lim; Ingo Grafe; Yuqing Chen; Hao Ding; Xiaohong Bi; Catherine G. Ambrose; Nadja Fratzl-Zelman; Paul Roschger; Klaus Klaushofer; Wolfgang Wagermaier; Ingo Schmidt; Peter Fratzl; Jyoti Rai; MaryAnn Weis; David R. Eyre; Douglas R. Keene; Deborah Krakow; Brendan Lee

Osteogenesis imperfecta (OI), also known as brittle bone disease, displays a spectrum of clinical severity from mild (OI type I) to severe early lethality (OI type II), with clinical features including low bone mass, fractures, and deformities. Mutations in the FK506 Binding Protein 10 (FKBP10), gene encoding the 65‐kDa protein FKBP65, cause a recessive form of OI and Bruck syndrome, the latter being characterized by joint contractures in addition to low bone mass. We previously showed that Fkbp10 expression is limited to bone, tendon, and ligaments in postnatal tissues. Furthermore, in both patients and Fkbp10 knockout mice, collagen telopeptide hydroxylysine crosslinking is dramatically reduced. To further characterize the bone specific contributions of Fkbp10, we conditionally ablated FKBP65 in Fkbp10fl/fl mice (Mus musculus; C57BL/6) using the osteoblast‐specific Col1a1 2.3‐kb Cre recombinase. Using μCT, histomorphometry and quantitative backscattered electron imaging, we found minimal alterations in the quantity of bone and no differences in the degree of bone matrix mineralization in this model. However, mass spectroscopy (MS) of bone collagen demonstrated a decrease in mature, hydroxylysine‐aldehyde crosslinking. Furthermore, bone of mutant mice exhibits a reduction in mineral‐to‐matrix ratio and in crystal size as shown by Raman spectroscopy and small‐angle X‐ray scattering, respectively. Importantly, abnormalities in bone quality were associated with impaired bone biomechanical strength in mutant femurs compared with those of wild‐type littermates. Taken together, these data suggest that the altered collagen crosslinking through Fkbp10 ablation in osteoblasts primarily leads to a qualitative defect in the skeleton.

Collaboration


Dive into the Ingo Grafe's collaboration.

Top Co-Authors

Avatar

Brendan Lee

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Brian Dawson

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Caressa Lietman

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Terry Bertin

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yuqing Chen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Catherine G. Ambrose

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Elda Munivez

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Erica P. Homan

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ming Ming Jiang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge