Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingo Haase is active.

Publication


Featured researches published by Ingo Haase.


Nature | 2002

TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2

Manolis Pasparakis; Gilles Courtois; Martin Hafner; Marc Schmidt-Supprian; Arianna Nenci; Atiye Toksoy; Monika Krampert; Matthias Goebeler; Reinhard Gillitzer; Alain Israël; Thomas Krieg; Klaus Rajewsky; Ingo Haase

The IκB kinase (IKK), consisting of the IKK1 and IKK2 catalytic subunits and the NEMO (also known as IKKγ) regulatory subunit, phosphorylates IκB proteins, targeting them for degradation and thus inducing activation of NF-κB (reviewed in refs 1, 2). IKK2 and NEMO are necessary for NF-κB activation through pro-inflammatory signals. IKK1 seems to be dispensable for this function but controls epidermal differentiation independently of NF-κB. Previous studies suggested that NF-κB has a function in the growth regulation of epidermal keratinocytes. Mice lacking RelB or IκBα, as well as both mice and humans with heterozygous NEMO mutations, develop skin lesions. However, the function of NF-κB in the epidermis remains unclear. Here we used Cre/loxP-mediated gene targeting to investigate the function of IKK2 specifically in epidermal keratinocytes. IKK2 deficiency inhibits NF-κB activation, but does not lead to cell-autonomous hyperproliferation or impaired differentiation of keratinocytes. Mice with epidermis-specific deletion of IKK2 develop a severe inflammatory skin disease, which is caused by a tumour necrosis factor-mediated, αβ T-cell-independent inflammatory response that develops in the skin shortly after birth. Our results suggest that the critical function of IKK2-mediated NF-κB activity in epidermal keratinocytes is to regulate mechanisms that maintain the immune homeostasis of the skin.


Nature Reviews Immunology | 2014

Mechanisms regulating skin immunity and inflammation

Manolis Pasparakis; Ingo Haase; Frank O. Nestle

Immune responses in the skin are important for host defence against pathogenic microorganisms. However, dysregulated immune reactions can cause chronic inflammatory skin diseases. Extensive crosstalk between the different cellular and microbial components of the skin regulates local immune responses to ensure efficient host defence, to maintain and restore homeostasis, and to prevent chronic disease. In this Review, we discuss recent findings that highlight the complex regulatory networks that control skin immunity, and we provide new paradigms for the mechanisms that regulate skin immune responses in host defence and in chronic inflammation.


Blood | 2012

CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair

Sebastian Willenborg; Tina Lucas; Geert van Loo; Johanna A. Knipper; Thomas Krieg; Ingo Haase; Bent Brachvogel; Matthias Hammerschmidt; Andras Nagy; Napoleone Ferrara; Manolis Pasparakis; Sabine A. Eming

Monocytes/macrophages are critical in orchestrating the tissue-repair response. However, the mechanisms that govern macrophage regenerative activities during the sequential phases of repair are largely unknown. In the present study, we examined the dynamics and functions of diverse monocyte/macrophage phenotypes during the sequential stages of skin repair. By combining the analysis of a new CCR2-eGFP reporter mouse model with conditional mouse mutants defective in myeloid cell-restricted CCR2 signaling or VEGF-A synthesis, we show herein that among the large number of inflammatory CCR2(+)Ly6C(+) macrophages that dominate the early stage of repair, only a small fraction strongly expresses VEGF-A that has nonredundant functions for the induction of vascular sprouts. The switch of macrophage-derived VEGF-A during the early stage of tissue growth toward epidermal-derived VEGF-A during the late stage of tissue maturation was critical to achieving physiologic tissue vascularization and healing progression. The results of the present study provide new mechanistic insights into CCR2-mediated recruitment of blood monocyte subsets into damaged tissue, the dynamics and functional consequences of macrophage plasticity during the sequential repair phases, and the complementary role of macrophage-derived VEGF-A in coordinating effective tissue growth and vascularization in the context of tissue-resident wound cells. Our findings may be relevant for novel monocyte-based therapies to promote tissue vascularization.


Journal of Clinical Investigation | 2006

Activated macrophages are essential in a murine model for T cell–mediated chronic psoriasiform skin inflammation

Honglin Wang; Thorsten Peters; Daniel Kess; Anca Sindrilaru; Tsvetelina Oreshkova; Nico van Rooijen; Athanasios Stratis; Andreas C. Renkl; Cord Sunderkötter; Meinhard Wlaschek; Ingo Haase; Karin Scharffetter-Kochanek

The CD18 hypomorphic (CD18hypo) PL/J mouse model clinically resembling human psoriasis is characterized by reduced expression of the common chain of beta2 integrins (CD11/CD18) to only 2-16% of WT levels. Previously we found that this chronic psoriasiform skin inflammation also depends on the presence of CD4+ T cells. Herein we investigated the role of macrophages in this CD18hypo mouse model. Activated macrophages were significantly increased in lesional skin as well as in inflamed skin draining lymph nodes (DLNs) of affected CD18hypo mice and were identified as being an important source of TNF-alpha in vivo. Both depletion of macrophages and neutralization of TNF-alpha resulted in a significant alleviation of psoriasiform skin inflammation. As monocyte chemotactic protein 1 was enhanced in lesional skin of affected CD18hypo mice, we intradermally injected recombinant murine monocyte chemotactic protein-1 (rJE/MCP-1) alone or in combination with rTNF-alpha into the skin of healthy CD18hypo mice. Only simultaneous injection of rJE/MCP-1 and rTNF-alpha, but neither substance alone, resulted in the induction of psoriasiform skin inflammation around the injection sites with recruitment and activation of macrophages. Collectively, our data suggest that maintenance of psoriasiform skin inflammation critically depends on efficient recruitment and activation of macrophages with sufficient release of TNF-alpha.


Journal of Clinical Investigation | 2006

Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation

Athanasios Stratis; Manolis Pasparakis; Rudolf A. Rupec; Doreen Markur; Karin Hartmann; Karin Scharffetter-Kochanek; Thorsten Peters; Nico van Rooijen; Thomas Krieg; Ingo Haase

Psoriasis is a common skin disease, the pathogenesis of which has not yet been resolved. In mice, epidermis-specific deletion of inhibitor of NF-kappaB (IkappaB) kinase 2 (IKK2) results in a skin phenotype that mimics human psoriasis in several aspects. Like psoriasis, this skin disease shows pronounced improvement when mice are treated with a TNF-neutralizing agent. We have found previously that this phenotype does not depend on the presence of alphabeta T lymphocytes. In order to evaluate contributions of other immune cell populations to the skin disease, we selectively eliminated macrophages and granulocytes from the skin of mice with epidermis-specific deletion of IKK2 (K14-Cre-IKK2fl/fl mice). Elimination of skin macrophages by subcutaneous injection of clodronate liposomes was accompanied by inhibition of granulocyte migration into the skin and resulted in a dramatic attenuation of psoriasis-like skin changes. The hyperproliferative, inflammatory skin disease in K14-Cre-IKK2fl/fl mice was a direct consequence of the presence of macrophages in the skin, as targeted deletion of CD18, which prevented accumulation of granulocytes but not macrophages, did not lead to major changes in the phenotype. Targeted deletion of the receptor for IFN-gamma revealed that the pathogenesis of the skin disease does not depend on classical IFN-gamma-mediated macrophage activation. Our results demonstrate that in mice epidermal keratinocytes can initiate a hyperproliferative, inflammatory, IFN-gamma-independent, psoriasis-like skin disease whose development requires essential contributions from skin macrophages but not from granulocytes or alphabeta T lymphocytes.


Journal of Cell Science | 2003

Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1- and EGF-dependent signalling pathways

Ingo Haase; Richard Evans; Ruth Pofahl; Fiona M. Watt

Adult epidermal keratinocytes migrate by crawling, a process that requires protrusion of the plasma membrane at the front of the cell and contraction of the cell body at the rear. We have found that epidermal growth factor (EGF) and insulin-like growth factor 1 (IGF-1) influence keratinocyte shape differently. Whereas IGF-1 stimulates membrane protrusion and facilitates cell spreading, EGF induces contraction of keratinocytes. The effects of each growth factor on keratinocyte shape are mediated by distinct signal transduction pathways: EGF stimulates the activity of the classical mitogen-activated protein kinase pathway and IGF-1 stimulates phosphatidylinositol-3-kinase. Activation of these kinases is both necessary and sufficient to induce cell shape changes upon growth factor treatment. In addition, IGF-1-stimulated keratinocyte spreading depends on the activation of Rho family proteins. In vitro assays of wound re-epithelialization show that both growth factors stimulate migration of keratinocytes, and the activity of the respective signalling pathways is required for this re-epithelialization process. When added simultaneously, IGF-1 and EGF have additive effects on wound epithelialization. Our results show that IGF-1 and EGF can influence different components of the keratinocyte migration machinery that determines the speed of wound epithelialization.


Journal of Clinical Investigation | 2001

A role for mitogen-activated protein kinase activation by integrins in the pathogenesis of psoriasis

Ingo Haase; Robin M. Hobbs; M.Rosario Romero; Simon Broad; Fiona M. Watt

In normal epidermis, beta1 integrin expression is confined to the basal layer, whereas in hyperproliferative epidermis, integrins are also expressed in the suprabasal layers. Transgenic mice in which integrins are expressed suprabasally via the involucrin promoter have a sporadic psoriatic phenotype; however, the mechanism by which integrins contribute to the pathogenesis of psoriasis is unknown. We observed activation of mitogen-activated protein kinase (MAPK) in basal and suprabasal keratinocytes of human and transgenic mouse psoriatic lesions and healing mouse skin wounds, correlating in each case with suprabasal integrin expression. Phenotypically normal human and transgenic mouse epidermis did not contain activated MAPK. Transgene-positive keratinocytes produced more IL-1alpha than controls did, and keratinocyte MAPK could be activated by ligation of suprabasal integrins or treatment with IL-1alpha. Constitutive activation of MAPK increased the growth rate of human keratinocytes and delayed the onset of terminal differentiation, recreating many of the histological features of psoriatic epidermis. We propose that activation of MAPK by integrins, either directly or through increased IL-1alpha production, is responsible for epidermal hyperproliferation in psoriasis and wound healing, and that the sporadic phenotype of the transgenic mice may reflect the complex mechanisms by which IL-1 release and responsiveness are controlled in skin.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Tumor immune escape by the loss of homeostatic chemokine expression

Andor Pivarcsi; Anja Müller; Andreas Hippe; Juliane Rieker; Anke van Lierop; Martin Steinhoff; Stephan Seeliger; Robert Kubitza; Ulrich Pippirs; Stephan Meller; Peter Arne Gerber; Ruediger Liersch; Erich Buenemann; Enikö Sonkoly; Ulrike Wiesner; Thomas K. Hoffmann; Leonid Schneider; Roland P. Piekorz; Elaine Enderlein; J. Reifenberger; Ulrich Peter Rohr; Rainer Haas; Petra Boukamp; Ingo Haase; Bernd Nürnberg; Thomas Ruzicka; Albert Zlotnik; Bernhard Homey

The novel keratinocyte-specific chemokine CCL27 plays a critical role in the organization of skin-associated immune responses by regulating T cell homing under homeostatic and inflammatory conditions. Here we demonstrate that human keratinocyte-derived skin tumors may evade T cell-mediated antitumor immune responses by down-regulating the expression of CCL27 through the activation of epidermal growth factor receptor (EGFR)–Ras–MAPK-signaling pathways. Compared with healthy skin, CCL27 mRNA and protein expression was progressively lost in transformed keratinocytes of actinic keratoses and basal and squamous cell carcinomas. In vivo, precancerous skin lesions as well as cutaneous carcinomas showed significantly elevated levels of phosphorylated ERK compared with normal skin, suggesting the activation of EGFR–Ras signaling pathways in keratinocyte-derived malignancies. In vitro, exogenous stimulation of the EGFR–Ras signaling pathway through EGF or transfection of the dominant-active form of the Ras oncogene (H-RasV12) suppressed whereas an EGFR tyrosine kinase inhibitor increased CCL27 mRNA and protein production in keratinocytes. In mice, neutralization of CCL27 led to decreased leukocyte recruitment to cutaneous tumor sites and significantly enhanced primary tumor growth. Collectively, our data identify a mechanism of skin tumors to evade host antitumor immune responses.


Journal of Cell Science | 2007

Impaired epidermal wound healing in vivo upon inhibition or deletion of Rac1

Michael Tscharntke; Ruth Pofahl; Anna Chrostek-Grashoff; Neil Smyth; Carien M. Niessen; Catherin Niemann; Benedikt Hartwig; Volker Herzog; Helmut W. Klein; Thomas Krieg; Cord Brakebusch; Ingo Haase

To address the functions of Rac1 in keratinocytes of the basal epidermal layer and in the outer root sheath of hair follicles, we generated transgenic mice expressing a dominant inhibitory mutant of Rac, N17Rac1, under the control of the keratin 14 promoter. These mice do not exhibit an overt skin phenotype but show protracted skin wound re-epithelialization. Investigation into the underlying mechanisms revealed that in vivo both proliferation of wound-edge keratinocytes and centripetal migration of the neo-epidermis were impaired. Similar results were obtained in mice with an epidermis-specific deletion of Rac1. Primary epidermal keratinocytes that expressed the N17Rac1 transgene were less proliferative than control cells and showed reduced ERK1/2 phosphorylation upon growth factor stimulation. Adhesion, spreading, random migration and closure of scratch wounds in vitro were significantly inhibited on collagen I and, to a lesser extent, on fibronectin. Stroboscopic analysis of cell dynamics (SACED) of N17Rac1 transgenic and control keratinocytes identified decreased lamella-protrusion persistence in connection with increased ruffle frequency as a probable mechanism for the observed impairment of keratinocyte adhesion and migration. We conclude that Rac1 is functionally required for normal epidermal wound healing and, in this context, exerts a dual function – namely the regulation of keratinocyte proliferation and migration.


Nature Cell Biology | 2007

Normal epidermal differentiation but impaired skin-barrier formation upon keratinocyte-restricted IKK1 ablation

Ralph Gareus; Marion Huth; Bernadette Breiden; Arianna Nenci; Nora Rösch; Ingo Haase; Wilhelm Bloch; Konrad Sandhoff; Manolis Pasparakis

The kinase IKK1 (also known as IKKα) was previously reported to regulate epidermal development and skeletal morphogenesis by acting in keratinocytes to induce their differentiation in an NF-κB independent manner. Here, we show that mice with epidermal keratinocyte-specific IKK1 ablation (hereafter referred to as IKK1EKO) develop a normally differentiated stratified epidermis, demonstrating that the function of IKK1 in inducing epidermal differentiation is not keratinocyte-autonomous. Despite normal epidermal stratification, the IKK1EKO mice display impaired epidermal-barrier function and increased transepidermal water loss, due to defects in stratum corneum lipid composition and in epidermal tight junctions. These defects are caused by the deregulation of retinoic acid target genes, encoding key lipid modifying enzymes and tight junction proteins, in the IKK1-deficient epidermis. Furthermore, we show that IKK1-deficient cells display impaired retinoic acid-induced gene transcription, and that IKK1 is recruited to the promoters of retinoic acid-regulated genes, suggesting that one mechanism by which IKK1 controls epidermal-barrier formation is by regulating the expression of retinoic acid receptor target genes in keratinocytes.

Collaboration


Dive into the Ingo Haase's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilhelm Bloch

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge