Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingo Ruczinski is active.

Publication


Featured researches published by Ingo Ruczinski.


Nature Genetics | 2011

Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations

Dara G. Torgerson; Elizabeth J. Ampleford; Grace Y. Chiu; W. James Gauderman; Christopher R. Gignoux; Penelope E. Graves; Blanca E. Himes; A. Levin; Rasika A. Mathias; Dana B. Hancock; James W. Baurley; Celeste Eng; Debra A. Stern; Juan C. Celedón; Nicholas Rafaels; Daniel Capurso; David V. Conti; Lindsey A. Roth; Manuel Soto-Quiros; Alkis Togias; Xingnan Li; Rachel A. Myers; Isabelle Romieu; David Van Den Berg; Donglei Hu; Nadia N. Hansel; Ryan D. Hernandez; Elliott Israel; Muhammad T. Salam; Joshua M Galanter

Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10−9). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma.


Proteins | 1999

Ab initio protein structure prediction of CASP III targets using ROSETTA.

Kim T. Simons; Rich Bonneau; Ingo Ruczinski; David Baker

To generate structures consistent with both the local and nonlocal interactions responsible for protein stability, 3 and 9 residue fragments of known structures with local sequences similar to the target sequence were assembled into complete tertiary structures using a Monte Carlo simulated annealing procedure (Simons et al., J Mol Biol 1997;268:209–225). The scoring function used in the simulated annealing procedure consists of sequence‐dependent terms representing hydrophobic burial and specific pair interactions such as electrostatics and disulfide bonding and sequence‐independent terms representing hard sphere packing, α‐helix and β‐strand packing, and the collection of β‐strands in β‐sheets (Simons et al., Proteins 1999;34:82–95). For each of 21 small, ab initio targets, 1,200 final structures were constructed, each the result of 100,000 attempted fragment substitutions. The five structures submitted for the CASP III experiment were chosen from the approximately 25 structures with the lowest scores in the broadest minima (assessed through the number of structural neighbors; Shortle et al., Proc Natl Acad Sci USA 1998;95:1158–1162). The results were encouraging: highlights of the predictions include a 99‐residue segment for MarA with an rmsd of 6.4 Å to the native structure, a 95‐residue (full length) prediction for the EH2 domain of EPS15 with an rmsd of 6.0 Å, a 75‐residue segment of DNAB helicase with an rmsd of 4.7 Å, and a 67‐residue segment of ribosomal protein L30 with an rmsd of 3.8 Å. These results suggest that ab initio methods may soon become useful for low‐resolution structure prediction for proteins that lack a close homologue of known structure. Proteins Suppl 1999;3:171–176.


Nature Genetics | 2009

Multiple loci associated with indices of renal function and chronic kidney disease

Anna Köttgen; Nicole L. Glazer; Abbas Dehghan; Shih Jen Hwang; Ronit Katz; Man Li; Qiong Yang; Vilmundur Gudnason; Lenore J. Launer; Tamara B. Harris; Albert V. Smith; Dan E. Arking; Brad C. Astor; Eric Boerwinkle; Georg B. Ehret; Ingo Ruczinski; Robert B. Scharpf; Yii-Der I. Chen; Ian H. de Boer; Talin Haritunians; Thomas Lumley; Mark J. Sarnak; David S. Siscovick; Emelia J. Benjamin; Daniel Levy; Ashish Upadhyay; Yurii S. Aulchenko; Albert Hofman; Fernando Rivadeneira; Andre G. Uitterlinden

Chronic kidney disease (CKD) has a heritable component and is an important global public health problem because of its high prevalence and morbidity. We conducted genome-wide association studies (GWAS) to identify susceptibility loci for glomerular filtration rate, estimated by serum creatinine (eGFRcrea) and cystatin C (eGFRcys), and CKD (eGFRcrea < 60 ml/min/1.73 m2) in European-ancestry participants of four population-based cohorts (ARIC, CHS, FHS, RS; n = 19,877; 2,388 CKD cases), and tested for replication in 21,466 participants (1,932 CKD cases). We identified significant SNP associations (P < 5 × 10−8) with CKD at the UMOD locus, with eGFRcrea at UMOD, SHROOM3 and GATM-SPATA5L1, and with eGFRcys at CST and STC1. UMOD encodes the most common protein in human urine, Tamm-Horsfall protein, and rare mutations in UMOD cause mendelian forms of kidney disease. Our findings provide new insights into CKD pathogenesis and underscore the importance of common genetic variants influencing renal function and disease.


Proteins | 1999

Improved Recognition of Native-Like Protein Structures Using a Combination of Sequence-Dependent and Sequence-Independent Features of Proteins

Kim T. Simons; Ingo Ruczinski; Charles Kooperberg; Brian A. Fox; Christopher Bystroff; David Baker

We describe the development of a scoring function based on the decomposition P(structure|sequence) ∝ P(sequence|structure) *P(structure), which outperforms previous scoring functions in correctly identifying native‐like protein structures in large ensembles of compact decoys. The first term captures sequence‐dependent features of protein structures, such as the burial of hydrophobic residues in the core, the second term, universal sequence‐independent features, such as the assembly of β‐strands into β‐sheets. The efficacies of a wide variety of sequence‐dependent and sequence‐independent features of protein structures for recognizing native‐like structures were systematically evaluated using ensembles of ≈30,000 compact conformations with fixed secondary structure for each of 17 small protein domains. The best results were obtained using a core scoring function with P(sequence|structure) parameterized similarly to our previous work (Simons et al., J Mol Biol 1997;268:209–225] and P(structure) focused on secondary structure packing preferences; while several additional features had some discriminatory power on their own, they did not provide any additional discriminatory power when combined with the core scoring function. Our results, on both the training set and the independent decoy set of Park and Levitt (J Mol Biol 1996;258:367–392), suggest that this scoring function should contribute to the prediction of tertiary structure from knowledge of sequence and secondary structure. Proteins 1999;34:82–95.


PLOS Genetics | 2009

Sensitive Detection of Chromosomal Segments of Distinct Ancestry in Admixed Populations

Alkes L. Price; Arti Tandon; Nick Patterson; Kathleen C. Barnes; Nicholas Rafaels; Ingo Ruczinski; Terri H. Beaty; Rasika A. Mathias; David Reich; Simon Myers

Identifying the ancestry of chromosomal segments of distinct ancestry has a wide range of applications from disease mapping to learning about history. Most methods require the use of unlinked markers; but, using all markers from genome-wide scanning arrays, it should in principle be possible to infer the ancestry of even very small segments with exquisite accuracy. We describe a method, HAPMIX, which employs an explicit population genetic model to perform such local ancestry inference based on fine-scale variation data. We show that HAPMIX outperforms other methods, and we explore its utility for inferring ancestry, learning about ancestral populations, and inferring dates of admixture. We validate the method empirically by applying it to populations that have experienced recent and ancient admixture: 935 African Americans from the United States and 29 Mozabites from North Africa. HAPMIX will be of particular utility for mapping disease genes in recently admixed populations, as its accurate estimates of local ancestry permit admixture and case-control association signals to be combined, enabling more powerful tests of association than with either signal alone.


Nature Structural & Molecular Biology | 1999

Experiment and theory highlight role of native state topology in SH3 folding

David S. Riddle; Viara P. Grantcharova; Jed V. Santiago; Eric Alm; Ingo Ruczinski; David Baker

We use a combination of experiments, computer simulations and simple model calculations to characterize, first, the folding transition state ensemble of the src SH3 domain, and second, the features of the protein that determine its folding mechanism. Kinetic analysis of mutations at 52 of the 57 residues in the src SH3 domain revealed that the transition state ensemble is even more polarized than suspected earlier: no single alanine substitution in the N-terminal 15 residues or the C-terminal 9 residues has more than a two-fold effect on the folding rate, while such substitutions at 15 sites in the central three-stranded β-sheet cause significant decreases in the folding rate. Molecular dynamics (MD) unfolding simulations and ab initio folding simulations on the src SH3 domain exhibit a hierarchy of folding similar to that observed in the experiments. The similarity in folding mechanism of different SH3 domains and the similar hierarchy of structure formation observed in the experiments and the simulations can be largely accounted for by a simple native state topology-based model of protein folding energy landscapes.


Nature Genetics | 2010

A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4

Terri H. Beaty; Jeffrey C. Murray; Mary L. Marazita; Ronald G. Munger; Ingo Ruczinski; Jacqueline B. Hetmanski; Kung Yee Liang; Tao Wu; Tanda Murray; M. Daniele Fallin; Richard Redett; Gerald V. Raymond; Holger Schwender; Sheng Chih Jin; Margaret E. Cooper; Martine Dunnwald; Maria Adela Mansilla; Elizabeth J. Leslie; Stephen Bullard; Andrew C. Lidral; Lina M. Moreno; Renato Menezes; Alexandre R. Vieira; Aline Petrin; Allen J. Wilcox; Rolv T. Lie; Ethylin Wang Jabs; Yah Huei Wu-Chou; Philip Kuo-Ting Chen; Hong Wang

Case-parent trios were used in a genome-wide association study of cleft lip with and without cleft palate. SNPs near two genes not previously associated with cleft lip with and without cleft palate (MAFB, most significant SNP rs13041247, with odds ratio (OR) per minor allele = 0.704, 95% CI 0.635–0.778, P = 1.44 × 10−11; and ABCA4, most significant SNP rs560426, with OR = 1.432, 95% CI 1.292–1.587, P = 5.01 × 10−12) and two previously identified regions (at chromosome 8q24 and IRF6) attained genome-wide significance. Stratifying trios into European and Asian ancestry groups revealed differences in statistical significance, although estimated effect sizes remained similar. Replication studies from several populations showed confirming evidence, with families of European ancestry giving stronger evidence for markers in 8q24, whereas Asian families showed stronger evidence for association with MAFB and ABCA4. Expression studies support a role for MAFB in palatal development.


American Journal of Human Genetics | 2009

Genome-wide Association Analysis Identifies PDE4D as an Asthma-Susceptibility Gene

Blanca E. Himes; Gary M. Hunninghake; James W. Baurley; Nicholas Rafaels; Patrick Sleiman; David P. Strachan; Jemma B. Wilk; Saffron A. G. Willis-Owen; Barbara J. Klanderman; Jessica Lasky-Su; Ross Lazarus; Amy Murphy; Manuel Soto-Quiros; Lydiana Avila; Terri H. Beaty; Rasika A. Mathias; Ingo Ruczinski; Kathleen C. Barnes; Juan C. Celedón; William Cookson; W. James Gauderman; Frank D. Gilliland; Hakon Hakonarson; Christoph Lange; Miriam F. Moffatt; George T. O'Connor; Benjamin A. Raby; Edwin K. Silverman; Scott T. Weiss

Asthma, a chronic airway disease with known heritability, affects more than 300 million people around the world. A genome-wide association (GWA) study of asthma with 359 cases from the Childhood Asthma Management Program (CAMP) and 846 genetically matched controls from the Illumina ICONdb public resource was performed. The strongest region of association seen was on chromosome 5q12 in PDE4D. The phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 dunce homolog, Drosophila) gene (PDE4D) is a regulator of airway smooth-muscle contractility, and PDE4 inhibitors have been developed as medications for asthma. Allelic p values for top SNPs in this region were 4.3 x 10(-07) for rs1588265 and 9.7 x 10(-07) for rs1544791. Replications were investigated in ten independent populations with different ethnicities, study designs, and definitions of asthma. In seven white and Hispanic replication populations, two PDE4D SNPs had significant results with p values less than 0.05, and five had results in the same direction as the original population but had p values greater than 0.05. Combined p values for 18,891 white and Hispanic individuals (4,342 cases) in our replication populations were 4.1 x 10(-04) for rs1588265 and 9.2 x 10(-04) for rs1544791. In three black replication populations, which had different linkage disequilibrium patterns than the other populations, original findings were not replicated. Further study of PDE4D variants might lead to improved understanding of the role of PDE4D in asthma pathophysiology and the efficacy of PDE4 inhibitor medications.


The New England Journal of Medicine | 2010

Variants of DENND1B Associated with Asthma in Children

Patrick Sleiman; James H. Flory; Marcin Imielinski; Jonathan P. Bradfield; Kiran Annaiah; Saffron A. G. Willis-Owen; Kai Wang; Nicholas Rafaels; Sven Michel; Klaus Bønnelykke; Haitao Zhang; Cecilia E. Kim; Edward C. Frackelton; Joseph T. Glessner; Cuiping Hou; F. George Otieno; Erin Santa; Kelly Thomas; Ryan M. Smith; Wendy Glaberson; Maria Garris; Rosetta M. Chiavacci; Terri H. Beaty; Ingo Ruczinski; Jordan M. Orange; Julian L. Allen; Jonathan M. Spergel; Robert W. Grundmeier; Rasika A. Mathias; Jason D. Christie

BACKGROUND Asthma is a complex disease that has genetic and environmental causes. The genetic factors associated with susceptibility to asthma remain largely unknown. METHODS We carried out a genomewide association study involving children with asthma. The sample included 793 North American children of European ancestry with persistent asthma who required daily inhaled glucocorticoid therapy and 1988 matched controls (the discovery set). We also tested for genomewide association in an independent cohort of 917 persons of European ancestry who had asthma and 1546 matched controls (the replication set). Finally, we tested for an association between 20 single-nucleotide polymorphisms (SNPs) at chromosome 1q31 and asthma in 1667 North American children of African ancestry who had asthma and 2045 ancestrally matched controls. RESULTS In our meta-analysis of all samples from persons of European ancestry, we observed an association, with genomewide significance, between asthma and SNPs at the previously reported locus on 17q21 and an additional eight SNPs at a novel locus on 1q31. The SNP most strongly associated with asthma was rs2786098 (P=8.55x10(-9)). We observed replication of the association of asthma with SNP rs2786098 in the independent series of persons of European ancestry (combined P=9.3x10(-11)). The alternative allele of each of the eight SNPs on chromosome 1q31 was strongly associated with asthma in the children of African ancestry (P=1.6x10(-13) for the comparison across all samples). The 1q31 locus contains the 1q31 locus contains DENND1B, a gene expressed by natural killer cells and dendritic cells. DENND1B protein is predicted to interact with the tumor necrosis factor α receptor [corrected]. CONCLUSIONS We have identified a locus containing DENND1B on chromosome 1q31.3 that is associated with susceptibility to asthma.


Nature Genetics | 2012

Detectable clonal mosaicism from birth to old age and its relationship to cancer

Cathy C. Laurie; Cecelia A. Laurie; Kenneth Rice; Kimberly F. Doheny; Leila R. Zelnick; Caitlin P. McHugh; Hua Ling; Kurt N. Hetrick; Elizabeth W. Pugh; Christopher I. Amos; Qingyi Wei; Li-E Wang; Jeffrey E. Lee; Kathleen C. Barnes; Nadia N. Hansel; Rasika A. Mathias; Denise Daley; Terri H. Beaty; Alan F. Scott; Ingo Ruczinski; Rob Scharpf; Laura J. Bierut; Sarah M. Hartz; Maria Teresa Landi; Neal D. Freedman; Lynn R. Goldin; David Ginsburg; Jun-Jun Li; Karl C. Desch; Sara S. Strom

We detected clonal mosaicism for large chromosomal anomalies (duplications, deletions and uniparental disomy) using SNP microarray data from over 50,000 subjects recruited for genome-wide association studies. This detection method requires a relatively high frequency of cells with the same abnormal karyotype (>5–10%; presumably of clonal origin) in the presence of normal cells. The frequency of detectable clonal mosaicism in peripheral blood is low (<0.5%) from birth until 50 years of age, after which it rapidly rises to 2–3% in the elderly. Many of the mosaic anomalies are characteristic of those found in hematological cancers and identify common deleted regions with genes previously associated with these cancers. Although only 3% of subjects with detectable clonal mosaicism had any record of hematological cancer before DNA sampling, those without a previous diagnosis have an estimated tenfold higher risk of a subsequent hematological cancer (95% confidence interval = 6–18).

Collaboration


Dive into the Ingo Ruczinski's collaboration.

Top Co-Authors

Avatar

Terri H. Beaty

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan F. Scott

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Gao

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge