Ingo Sonder
University at Buffalo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ingo Sonder.
Geochemistry Geophysics Geosystems | 2014
Alison H. Graettinger; Greg A. Valentine; Ingo Sonder; Pierre-Simon Ross; James D. L. White; Jacopo Taddeucci
Basaltic maar-diatreme volcanoes, which have craters cut into preeruption landscapes (maars) underlain by downward-tapering bodies of fragmental material commonly cut by hypabyssal intrusions (diatremes), are produced by multiple subsurface phreatomagmatic explosions. Although many maar-diatremes have been studied, the link between explosion dynamics and the resulting deposit architecture is still poorly understood. Scaled experiments employed multiple buried explosions of known energies and depths within layered aggregates in order to assess the effects of explosion depth, and the morphology and compaction of the host on the distribution of host materials in resulting ejecta, the development of subcrater structures and deposits, and the relationships between them. Experimental craters were 1–2 m wide. Analysis of high-speed video shows that explosion jets had heights and shapes that were strongly influenced by scaled depth (physical depth scaled against explosion energy) and by the presence or absence of a crater. Jet properties in turn controlled the distribution of ejecta deposits outside the craters, and we infer that this is also reflected in the diverse range of deposit types at natural maars. Ejecta were dominated by material that originated above the explosion site, and the shallowest material was dispersed the farthest. Subcrater deposits illustrate progressive vertical mixing of host materials through successive explosions. We conclude that the progressive appearance of deeper-seated material stratigraphically upward in deposits of natural maars probably records the length and time scale for upward mixing through multiple explosions with ejection by shallow blasts, rather than progressive deepening of explosion sites in response to draw down of aquifers.
Geophysical Research Letters | 2014
Greg A. Valentine; Alison H. Graettinger; Ingo Sonder
Subsurface phreatomagmatic explosions can result from the interaction of ascending magma with groundwater. Experiments over a wide range of energies show that for a given energy there is a depth below which an explosion will be contained within the subsurface (not erupt), and there is a corresponding shallower depth that will optimize ejecta dispersal. We combine these relationships with constraints on the energies of phreatomagmatic explosions at maar-diatreme volcanoes and show that most eruptions are likely sourced by explosions in the uppermost ~200 m, and even shallower ones (<100 m) are likely to dominate deposition onto tephra rings. Most explosions below ~200 m will not erupt but contribute to formation of, and to the vertical mixing of materials within, a diatreme (vent structure), with only rare very high energy explosions between ~200 and 500 m erupting. Similar constraints likely apply at other volcanoes that experience phreatomagmatic explosions.
Journal of Geophysical Research | 2010
Pierfrancesco Dellino; Fabio Dioguardi; Bernd Zimanowski; Ralf Büttner; Daniela Mele; L. La Volpe; Roberto Sulpizio; Domenico Maria Doronzo; Ingo Sonder; Rosanna Bonasia; S. Calvari; E. Marotta
Accepted for publication in (Geophysical Research Letters). Copyright (2009) American Geophysical Union.
Bulletin of Volcanology | 2015
Greg A. Valentine; Alison H. Graettinger; Élodie Macorps; Pierre-Simon Ross; James D. L. White; Erika Döhring; Ingo Sonder
We present results of experiments that use small chemical explosive charges buried in layered aggregates to simulate the effects of subsurface hydrothermal and phreatomagmatic explosions at varying depths and lateral locations, extending earlier experimental results that changed explosion locations only along a vertical axis. The focus is on the resulting crater size and shape and subcrater structures. Final crater shapes tend to be roughly circular if subsurface explosion epicenters occur within each other’s footprints (defined as the plan view area of reference crater produced by a single explosion of a given energy, as predicted by an empirical relationship). Craters are elongate if an epicenter lies somewhat beyond the footprint of the previous explosion, such that their footprints overlap, but if epicenters are too far apart, the footprints do not overlap and separate craters result. Explosions beneath crater walls formed by previous blasts tend to produce inclined (laterally directed) ejecta jets, while those beneath crater centers are vertically focused. Lateral shifting of explosion sites results in mixing of subcrater materials by development of multiple subvertical domains of otherwise pure materials, which progressively break down with repeated blasts, and by ejection and fallback of deeper-seated material that had experienced net upward displacement to very shallow levels by previous explosions. A variably developed collar of material that experienced net downward displacement surrounds the subvertical domains. The results demonstrate key processes related to mixing and ejection of materials from different depths during an eruptive episode at a maar-diatreme volcano as well as at other phreatomagmatic and hydrothermal explosion sites.
Bulletin of Volcanology | 2015
Alison H. Graettinger; Greg A. Valentine; Ingo Sonder; Pierre-Simon Ross; James D. L. White
The volume, grain size, and depositional facies of material deposited outside an explosion crater, ejecta, are sensitive to the depth of the explosion, the explosion energy, and the presence or absence of a crater before the explosion. We detonate buried chemical explosives as an analog for discrete volcanic explosions in experiments to identify unique characteristics of proximal, medial, and distal ejecta facies and their distribution from a range of scaled depths in undisturbed and cratered ground. Ejecta are here discussed in terms of three facies: (1) proximal ejecta, which form a constructional landform around a crater; (2) medial ejecta, which form a continuous sheet deposit that thins much more gradually with distance; and (3) distal ejecta that are deposited as isolated clasts. The extent of proximal ejecta away from the crater, relative to crater size, is not sensitive to scaled depth, but the volume proportion of proximal ejecta to the total ejecta deposit is sensitive to the presence of a crater and scaled depth. Medial ejecta distribution and volume contributions are both sensitive to the presence of a crater and to scaled depth. Distal ejecta distance is dependent on scaled depth and the presence of a crater, while the volume proportion of distal ejecta is less sensitive to scaled depth or presence of a crater. Experimental facies and deposit structures inferred from observations of jet dynamics are used to suggest facies associations anticipated from eruptions dominated by explosions of different scaled depth configurations. We emphasize that significant differences in tephra ring deposits can result from the effects of scaled depth and preexisting craters on ejecta dynamics, and are not necessarily related to fundamental differences in explosion mechanisms or degree of magma fragmentation.
Bulletin of Volcanology | 2014
Pierfrancesco Dellino; Fabio Dioguardi; Daniela Mele; M. D’Addabbo; Bernd Zimanowski; Ralf Büttner; Domenico Maria Doronzo; Ingo Sonder; Roberto Sulpizio; Tobias Dürig; L. La Volpe
The source conditions of volcanic plumes and collapsing fountains are investigated by means of large-scale experiments. In the experiments, gas-particle jets issuing from a cylindrical conduit are forced into the atmosphere at different mass flow rates. Dense jets (high particle volumetric concentration, e.g., C0 > 0.01) generate collapsing fountains, whose height scales with the squared exit velocity. This is consistent with Bernoulli’s equation, which is a good approximation if air entrainment is negligible. In this case, kinetic energy is transformed into potential energy without any significant loss by friction with the atmosphere. The dense collapsing fountain, on hitting the ground, generates an intense shear flow similar to a pyroclastic density current. Dilute hot jets (low particle volumetric concentration, e.g., C0 < 0.01) dissipate their initial kinetic energy at much smaller heights than those predicted by Bernoulli’s equation. This is an indication that part of the total mechanical energy is lost by friction with the atmosphere. Significant air entrainment results in this case, leading to the formation of a buoyant column (plume) from which particles settle similarly to pyroclastic fallout. The direct measurement of entrainment coefficient in the experiments suggests that dense collapsing fountains form only when air entrainment is not significant. This is a consequence of the large density difference between the jet and the atmosphere. Cold dilute experiments result in an entrainment coefficient of about 0.06, which is typical of pure jets of fluid dynamics. Hot dilute experiments result in an entrainment coefficient of about 0.11, which is typical of thermally buoyant plumes. The entrainment coefficients obtained by experiments were used as input data in numerical simulations of fountains and plumes. A numerical model was used to solve the classic top-hat system of governing equations, which averages the field variables (e.g., column velocity and density) across the column. The maximum heights calculated with the model agree well with those observed experimentally, showing that our entrainment coefficients are compatible with a top-hat model. Dimensional analysis of the experimental data shows that a value of 3 for the source densimetric Froude number characterizes the transition between dense collapsing fountains and dilute plumes. This value delimits the source conditions (exit velocity, conduit radius, and particle volumetric concentration) for pyroclastic flow (<3) and fallout (>3).
Journal of Geophysical Research | 2015
Ingo Sonder; Alison H. Graettinger; Greg A. Valentine
Most volcanic explosions leave a crater in the surface around the center of the explosions. Such craters differ from products of single events like meteorite impacts or those produced by military testing because they typically result from multiple, rather than single, explosions. Here we analyze the evolution of experimental craters that were created by several detonations of chemical explosives in layered aggregates. An empirical relationship for the scaled crater radius as a function of scaled explosion depth for single blasts in flat test beds is derived from experimental data, which differs from existing relations and has better applicability for deep blasts. A method to calculate an effective explosion depth for nonflat topography (e.g., for explosions below existing craters) is derived, showing how multiblast crater sizes differ from the single-blast case: Sizes of natural caters (radii and volumes) are not characteristic of the number of explosions, nor therefore of the total acting energy, that formed a crater. Also, the crater size is not simply related to the largest explosion in a sequence but depends upon that explosion and the energy of that single blast and on the cumulative energy of all blasts that formed a crater. The two energies can be combined to form an effective number of explosions that is characteristic for the crater evolution. The multiblast crater size evolution has implications on the estimates of volcanic eruption energies, indicating that it is not correct to estimate explosion energy from crater size using previously published relationships that were derived for single-blast cases.
Geophysical Research Letters | 2014
Daniel C. Bowman; Jacopo Taddeucci; Keehoon Kim; Jacob F. Anderson; Jonathan M. Lees; Alison H. Graettinger; Ingo Sonder; Greg A. Valentine
Infrasound and high-speed imaging during a series of field-scale buried explosions suggest new details about the generation and radiation patterns of acoustic waves from volcanic eruptions. We recorded infrasound and high-speed video from a series of subsurface explosions with differing burial depths and charge sizes. Joint observations and modeling allow the extraction of acoustic energy related to the magnitude of initial ground deformation, the contribution of gas breakout, and the timing of the fallback of displaced material. The existence and relative acoustic amplitudes of these three phases depended on the size and depth of the explosion. The results motivate a conceptual model that relates successive contributions from ground acceleration, gas breakout, and spall fallback to the acoustic amplitude and waveform characteristics of buried explosions. We place the literature on infrasound signals at Santiaguito Volcano, Guatemala, and Sakurajima and Suwonosejima Volcanoes, Japan, in the context of this model.
Bulletin of Volcanology | 2016
Élodie Macorps; Alison H. Graettinger; Greg A. Valentine; Pierre-Simon Ross; James D. L. White; Ingo Sonder
While the relationship between the host-substrate properties and the formation of maar-diatreme volcanoes have been investigated in the past, it remains poorly understood. In order to establish the effects of the qualitative host-substrate properties on crater depth, diameter, morphological features, and sub-surface structures, we present a comparison of four campaigns of experiments that used small chemical explosives buried in various geological media to simulate the formation of maar-diatremes. Previous results from these experiments have shown that primary variations in craters and sub-surface structures are related to the scaled depth (physical depth divided by cube root of blast energy). Our study reveals that single explosions at optimal scaled depths in stronger host materials create the largest and deepest craters with steep walls and the highest crater rims. For single explosions at deeper than optimal scaled depths, the influence of material strength is less obvious and non-linear for crater depth, and non-existent for crater diameter, within the range of the experiments. For secondary and tertiary blasts, there are no apparent relationships between the material properties and the crater parameters. Instead, the presence of pre-existing craters influences the crater evolution. A general weakening of the materials after successive explosions can be observed, suggesting a possible decrease in the host-substrate influence even at optimal scaled depth. The results suggest that the influence of the host-substrate properties is important only in the early stage of a maar-diatreme (neglecting post-eruptive slumping into the open crater) and decreases as explosion numbers increase. Since maar-diatremes reflect eruptive histories that involve tens to hundreds of individual explosions, the influence of initial substrate properties on initial crater processes could potentially be completely lost in a natural system.
Frontiers of Earth Science in China | 2017
Greg A. Valentine; James D. L. White; Pierre-Simon Ross; Alison H. Graettinger; Ingo Sonder
Recent work is changing our understanding of phreatomagmatic maar-diatreme eruptions and resulting deposits. In previous models, explosions were often inferred to take place only at the base of a diatreme, with progressive downward migration due to a cone of depression in the host aquifer. However, diatremes themselves contain much water that is heterogeneously distributed, and field evidence supports the existence of explosion sites at many vertical and lateral locations within them. Crater sizes have been used to estimate explosion energies, but this only works for single-explosion craters where the depth of explosion is independently known, and has limited value for multi-explosion maar-diatremes. Deep-seated lithic clasts in tephra ring beds have been taken to indicate the depth of the explosion that produced that bed. However, only relatively shallow explosions actually vent to the surface, and deep-seated lithics are gradually brought to shallow depths through step-wise mixing of multiple subsurface explosions. Grain-size of tephra-ring deposits is often inferred to indicate fragmentation efficiency. However, other factors strongly influence deposit grain size, including the scaled depth of an explosion and the interaction of an erupting jet with topography around a vent (e.g., crater), along with long recognized effects of mechanical properties of host rocks and recycling within the vent/diatreme. These insights provide a foundation for future research into this important volcano type.