Ingrid Bazin
Mines ParisTech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ingrid Bazin.
Ecotoxicology and Environmental Safety | 2012
Ingrid Bazin; Aziza Ibn Hadj Hassine; Yosra Haj Hamouda; Wissem Mnif; Ahgleb Bartegi; Miguel López-Ferber; Michel De Waard; Catherine Gonzalez
The presence of dyes in wastewater effluent of textile industry is well documented. In contrast, the endocrine disrupting effects of these dyes and wastewater effluent have been poorly investigated. Herein, we studied twenty-three commercial dyes, usually used in the textile industry, and extracts of blue jean textile wastewater samples were evaluated for their agonistic and antagonistic estrogen activity. Total estrogenic and anti-estrogenic activities were measured using the Yeast Estrogen Screen bioassay (YES) that evaluates estrogen receptor binding-dependent transcriptional and translational activities. The estrogenic potencies of the dyes and wastewater samples were evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. The dose-dependent anti-estrogenic activities of the dyes and wastewater samples were normalized to the known antagonistic effect of 4-hydroxytamoxifen (4-OHT) on the induction of the lac Z reporter gene by E2. About half azo textile dyes have anti-estrogenic activity with the most active being Blue HFRL. Most azo dyes however have no or weak estrogenic activity. E2/dye or E2/waste water ER competitive binding assays show activity of Blue HFRL, benzopurpurine 4B, Everzol Navy Blue FBN, direct red 89 BNL 200% and waste water samples indicating a mechanism of action common to E2. Our results indicate that several textile dyes are potential endocrine disrupting agents. The presence of some of these dyes in textile industry wastewater may thus impact the aquatic ecosystem.
Toxins | 2010
Ingrid Bazin; Elodie Nabais; Miguel López-Ferber
This paper reviews the early detection strategies that have been employed for the rapid monitoring of ochratoxin A (OTA) contamination of food. OTA, a mycotoxin mainly produced by some Aspergillus and Penicillium species, is found in cereals, coffee, wine, pork and grapes. To minimize the entry of this mycotoxin into the food chain, rapid diagnostic tools are required. To this end, the potential use of lateral flow devices has also been developed. In this study, we analyze the robustness of test strips using published methods for colorimetric detection. Different test formats are discussed, and challenges in the development of lateral flow devices for on-site determination of OTA, with requirements such as robustness, speed, and cost-effectiveness, are discussed.
Archive | 2010
Ingrid Bazin; Aurelie Gadal; Eveline Touraud; Benoit Roig
Parabens are alkyl esters of p-hydroxybenzoic acid that could be encountered in various environmental waters; and there is little available information about the adverse effects of these compounds on aquatic organisms. Moreover, information concerning their levels and potential environmental long-term effects are currently missing.
Environmental Science and Pollution Research | 2017
Mireille Ansaldi; Ingrid Bazin; Pierre Cholat; Agnès Rodrigue
This special issue of Environmental Science and Pollution Research highlights selected papers whose results have been obtained in the course of the COMBITOX project. COMBITIOX is an interdisciplinary research project funded by the French National Research Agency (ANR) aiming at conceiving an inline multiparametric device for the surveillance of water networks using biosensors. This device is not intended to fully replace chemical methods, but when compared to analytical chromatographic methodologies, biological sensors can offer rapid and on-site monitoring of even trace levels of targeted compounds (Sun et al. 2015) and can quickly raise the alarm in the event of an accidental or intentional pollution. Numerous developments have been published to improve the sensitivity, specificity, and time response of various biosensors in laboratory conditions (Xiong et al. 2012) (der Meer et al. 2010), but their actual transfer into technological devices for the surveillance of water networks remains at a conceptual level. Thus, the challenge here is to go a step beyond and validate biosensors under real-life field conditions by incorporating them in a single inline detector. During the course of COMBITOX, we could define the interface between the biosensors and a common light detector as well as the physical conditioning of the bioreagents and usage protocol. Our resulting prototype allow the detection of bioavailable toxic compounds as well as microorganisms, impacting human health through the drinking water network or interfering with the biological process of modern wastewater treatment plants. We also plan to propose this system to meet the emerging threats such as bioterrorism. COMBITOX focuses on three families of Bobjects^ to detect: metals (cadmium, mercury, arsenic, nickel, etc.), environmental and/or food toxins, and pathogenic microorganisms. Whole-cell biosensors based on reporter gene under the control of an inducible promoter are used to detect various metals (Hynninen and Virta 2010), the antibody/antigen interaction for toxins (Makaraviciute and Ramanaviciene 2013), and the specific infection of bacteria by bacteriophages for pathogenic microorganisms (Smartt et al. 2012) (Vinay et al. 2015). In all cases, the signal measured is photochemical (fluorescence, bioluminescence, or chemo-luminescence): such a method to transduce the biological recognition is very sensitive and a single photodetector can be used for all biosensors included in the device. The challenge here rather lies in the design and the optimization of the different biological compounds for their use in the field while maintaining a high sensibility and robustness. As a consequence, the different articles presented in this special issue focus on original strategies for the optimization and the adaptation of the three types of biosensors for their use in a semi-autonomous inline water analyzer. In the case of whole-cell biosensors, improvement of the dose-responses Responsible editor: Philippe Garrigues
Biosensors and Bioelectronics | 2013
Ingrid Bazin; Nicolas Andreotti; Aziza Ibn Hadj Hassine; Michel De Waard; Jean-Marc Sabatier; Catherine Gonzalez
Ochratoxin A (OTA) is a widespread and abundant natural carcinogenic mycotoxin produced by several species of Aspergillus and Penicillium fungi. Due to the ubiquitous presence of these fungi in food and potential risk for human health, a rapid and sensitive in vitro detection assay is required. Analytical methods for OTA detection/identification are generally based on liquid-liquid extraction, clean-up using an immunoaffinity column (IAC), and identification by reversed-phase high pressure liquid chromatography with fluorescence detection (HPLC-FLD). However, IACs are costly and have a short lifespan. Therefore, an interesting approach would appear to be the design and chemical synthesis of a mimotope peptide simulating mycotoxin-specific antibodies. We have developed a promising alternative method that is based on the use of peptides which are able to bind to specific chemical functions and/or molecular structures. Accordingly, a number of peptides (derived from the structures of major redox proteins) were selected and produced by chemical solid phase syntheses. The ability of such peptides to bind to ochratoxin A was evaluated by HPLC. The peptide NF04 (structurally derived from an oxidoreductase enzyme), which was found to be the sole potently reactive compound among tested molecules, was further evaluated in a peptide-based enzyme-linked immunosorbent assay (peptide-based ELISA), thus confirming its specific interaction with ochratoxin A.
Biosensors and Bioelectronics | 2015
R. Soleri; H. Demey; Scherrine A. Tria; Anthony Guiseppi-Elie; A. Ibn Had Hassine; Catherine Gonzalez; Ingrid Bazin
A novel bioassay for the detection and monitoring of Ochratoxin A (OTA), a natural carcinogenic mycotoxin produced by Aspergillus and Penicillium fungi, has been developed and applied for the screening of red wine. Here we report the immobilization and orientation of NOF4, a synthetic peptide, onto 3-D porous chitosan supports using a N-terminal histidine tag to allow binding to M(++) ions that were previously adsorbed onto the high surface area biopolymer. Three divalent cations (M(++)=Zn(++), Co(++), Ni(++)) were evaluated and were found to adsorb via a Langmuir model and to have binding capacities in the order Zn(++)>Co(++)>Ni(++). Following Zn(++) saturation and washing, C-terminus vs. the N-terminus His-tagged NOF4 was evaluated. At 1000 µg L(-1) OTA the N-terminus immobilization was more efficient (2.5 times) in the capture of OTA. HRP labeled OTA was added to the antigen solutions (standards or samples) and together competitively incubated on biospecific chitosan foam. The chemiluminescence substrate luminol was then added and after 5 min of enzymatic reaction, light emission signals (λmax=425 nm) were analyzed. Calibration curves of %B/B0 vs. OTA concentration in PBS showed that half-inhibition occurred at 1.17 µg L(-1), allowing a range of discrimination of 0.25 and 25 µg L(-1). In red wine, the minimum concentration of OTA that the system can detect was 0.5 µg L(-1) and could detect up to 5 µg L(-1). Assay validation was performed against immunoaffinity column (IAC) tandem reversed-phase high pressure liquid chromatography with fluorescence detection (HPLC-FLD) and provided quite good agreement. The association of chitosan foam and specific peptide represents a new approach with potential for both purification-concentration and detection of small molecules. In the future this assay will be implemented in a solid-sate bioelectronic format.
Toxins | 2013
Ingrid Bazin; Virginie Faucet-Marquis; Marie-Carmen Monje; Micheline El Khoury; Jean-Louis Marty; Annie Pfohl-Leszkowicz
Mycotoxins are secondary metabolites produced by several fungi contaminating crops. In several countries, the maximum permitted levels of mycotoxins are found in foodstuffs and feedstuffs. The common strategy of mycotoxin analysis involves extraction, clean-up and quantification by chromatography. In this paper, we analyzed the reasons of underestimation of ochratoxin A (OTA) content in wine, and overestimation of OTA in wheat, depending on the pH of the clean-up step and the simultaneous presence of citrinin (CIT). We demonstrated that the increase of pH by adding polyethylene glycol (PEG) to wine led to an underestimation of OTA by conversion of OTA into open ring ochratoxin A OP-OA. In comparing three methods of extraction and clean-up for the determination of OTA and CIT in wheat—(i) an inter-laboratory validated method for OTA in cereals using immunoaffinity column clean-up (IAC) and extraction by acetonitrile/water; (ii) a validated method using IAC and extraction with 1% bicarbonate Na; and (iii) an in-house validated method based on acid liquid/liquid extraction—we observed an overestimation of OTA after immunoaffinity clean-up when CIT is also present in the sample, whereas an underestimation was observed when OTA was alone. Under neutral and alkaline conditions, CIT was partially recognized by OTA antibodies.
Toxins | 2014
Frantisek Malir; Vladimir Ostry; Annie Pfohl-Leszkowicz; Jakub Toman; Ingrid Bazin; Tomas Roubal
Ochratoxin A (OTA) is nephrotoxic, hepatotoxic, immunotoxic, neurotoxic, reprotoxic, teratogenic, and carcinogenic (group 2B), being characterized by species and sex differences in sensitivity. Despite the fact that OTA is in some aspects a controversial topic, OTA is the most powerful renal carcinogen. The aim of this study was to make a small survey concerning OTA content in black tea, fruit tea, and ground roasted coffee, and to assess OTA transfer into beverages. OTA content was measured using a validated and accredited HPLC-FLD method with a limit of quantification (LOQ) of 0.35 ng/g. The OTA amount ranged from LOQ up to 250 ng/g in black tea and up to 104 ng/g in fruit tea. Black tea and fruit tea, naturally contaminated, were used to prepare tea infusions. The transfer from black tea to the infusion was 34.8% ± 1.3% and from fruit tea 4.1% ± 0.2%. Ground roasted coffee naturally contaminated at 0.92 ng/g was used to prepare seven kinds of coffee beverages. Depending on the type of process used, OTA transfer into coffee ranged from 22.3% to 66.1%. OTA intakes from fruit and black tea or coffee represent a non-negligible human source.
Biosensors and Bioelectronics | 2016
Scherrine A. Tria; David Lopez-Ferber; Catherine Gonzalez; Ingrid Bazin; Anthony Guiseppi-Elie
The low molecular weight hapten, Ochratoxin A (OTA), is a natural carcinogenic mycotoxin produced by Aspergillus and Penicillium fungi and so it commonly appears in wines, other foods, and in the environment. An amperometric biosensor has been developed that uses the immobilized synthetic peptide, NFO4; which possesses a high binding affinity and thus provides for molecular recognition of OTA; simulating the mycotoxin-specific antibody. Biotransducers were produced from a microlithographically fabricated electrochemical cell-on-a-chip that uses the microdisc electrode array working electrode format augmented with microporous graphitized carbon (MGC) that was electrodeposited within a poly(aniline-co-meta-aminoaniline) electroconductive polymer layer. A redox mediator, iron-nickel hexacyanoferrate (Fe|NiHCF) was amperometrically deposited onto the MGC. The device was then dip-coated with monomer cocktail that yielded poly(HEMA-co-AEMA) foam that was prepared in-situ by UV crosslinking and by sequentially freezing followed by freeze drying of the chip to yield a 3-D support for the chelation of Zn(2+) ions (ZnCl2) and the subsequent immobilization of N-terminus his-tagged peptide, NFO4. To conduct the biosensors assay, HRP conjugated OTA was added to the free OTA solutions and together competitively incubated on the biospecific MDEA ECC 5037-Pt|MGC|HCF|Hydrogel-NFO4 biotransducer. The amperometric response to peroxide was determined after 5 min of enzymatic reaction following addition of standard substrate H2O2/luminol. Simultaneous analysis of light emission signals (λmax=425 nm) allowed direct comparison of amperometric and luminescence performance. Using chitosan foam and a luminescence bioassay we obtained maximum inhibition at 10 μg L(-1) and half inhibition occurred at 2.1 μg L(-1). Using poly(HEMA-co-AEMA) hydrogel and an amperometric bioassay (50s) we obtained maximum inhibition at 10 μg L(-1) and half inhibition occurred at 2.8 μg L(-1).
Environmental Science and Pollution Research | 2017
Ingrid Bazin; Ho Bin Seo; Carey M. Suehs; Marc Ramuz; Michel De Waard; Man Bock Gu
Various water samples were successfully evaluated using a panel of different recombinant bioluminescent bacteria and estrogenic activity analysis. The bioluminescent bacteria strains induced by oxidative (superoxide radical or hydroxyl radical), protein damage, cell membrane damage, or cellular toxicity were used. Estrogenic activities were examined by using the yeast strain BY4741, which carries the β-galactosidase reporter gene under the control of the estrogen-responsive element (ERE). A total of 14 samples from three wastewater treatment plants, one textile factory, and seawater locations in Tunisia were analyzed. A wide range of bio-responses were described. Site/sample heterogeneity was prevalent, in combination with generally high relative bioluminescence scores for oxidative stress (OH•). Estrogenic activity was detected at all sites and was particularly elevated at certain sites. Our perspectives include the future exploration of the variation detected in relation to treatment plant operations and environmental impacts. In conclusion, this new multi-experimental method can be used for rapid bio-response profile monitoring and the evaluation of environmental samples spanning a wide range of domains. This study confirms that bio-reactive wastewater treatment plant (WWTP) effluents are discharged into seawater, where they may impact coastal populations.