Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingrid E. Frohner is active.

Publication


Featured researches published by Ingrid E. Frohner.


Molecular Microbiology | 2009

Candida albicans cell surface superoxide dismutases degrade host‐derived reactive oxygen species to escape innate immune surveillance

Ingrid E. Frohner; Christelle Bourgeois; Kristina Yatsyk; Olivia Majer; Karl Kuchler

Mammalian innate immune cells produce reactive oxygen species (ROS) in the oxidative burst reaction to destroy invading microbial pathogens. Using quantitative real‐time ROS assays, we show here that both yeast and filamentous forms of the opportunistic human fungal pathogen Candida albicans trigger ROS production in primary innate immune cells such as macrophages and dendritic cells. Through a reverse genetic approach, we demonstrate that coculture of macrophages or myeloid dendritic cells with C. albicans cells lacking the superoxide dismutase (SOD) Sod5 leads to massive extracellular ROS accumulation in vitro. ROS accumulation was further increased in coculture with fungal cells devoid of both Sod4 and Sod5. Survival experiments show that C. albicans mutants lacking Sod5 and Sod4 exhibit a severe loss of viability in the presence of macrophages in vitro. The reduced viability of sod5Δ/Δ and sod4Δ/Δsod5Δ/Δ mutants relative to wild type is not evident with macrophages from gp91phox−/− mice defective in the oxidative burst activity, demonstrating a ROS‐dependent killing activity of macrophages targeting fungal pathogens. These data show a physiological role for cell surface SODs in detoxifying ROS, and suggest a mechanism whereby C. albicans, and perhaps many other microbial pathogens, can evade host immune surveillance in vivo.


Journal of Immunology | 2011

Conventional Dendritic Cells Mount a Type I IFN Response against Candida spp. Requiring Novel Phagosomal TLR7-Mediated IFN-β Signaling

Christelle Bourgeois; Olivia Majer; Ingrid E. Frohner; Iwona Lesiak-Markowicz; Kwang-Soo Hildering; Walter Glaser; Silvia Stockinger; Thomas Decker; Shizuo Akira; Mathias Müller; Karl Kuchler

Human fungal pathogens such as the dimorphic Candida albicans or the yeast-like Candida glabrata can cause systemic candidiasis of high mortality in immunocompromised individuals. Innate immune cells such as dendritic cells and macrophages establish the first line of defense against microbial pathogens and largely determine the outcome of infections. Among other cytokines, they produce type I IFNs (IFNs-I), which are important modulators of the host immune response. Whereas an IFN-I response is a hallmark immune response to bacteria and viruses, a function in fungal pathogenesis has remained unknown. In this study, we demonstrate a novel mechanism mediating a strong IFN-β response in mouse conventional dendritic cells challenged by Candida spp., subsequently orchestrating IFN-α/β receptor 1-dependent intracellular STAT1 activation and IFN regulatory factor (IRF) 7 expression. Interestingly, the initial IFN-β release bypasses the TLR 4 and TLR2, the TLR adaptor Toll/IL-1R domain-containing adapter-inducing IFN-β and the β-glucan/phagocytic receptors dectin-1 and CD11b. Notably, Candida-induced IFN-β release is strongly impaired by Src and Syk family kinase inhibitors and strictly requires completion of phagocytosis as well as phagosomal maturation. Strikingly, TLR7, MyD88, and IRF1 are essential for IFN-β signaling. Furthermore, in a mouse model of disseminated candidiasis we show that IFN-I signaling promotes persistence of C. glabrata in the host. Our data uncover for the first time a pivotal role for endosomal TLR7 signaling in fungal pathogen recognition and highlight the importance of IFNs-I in modulating the host immune response to C. glabrata.


PLOS Pathogens | 2010

The Set3/Hos2 Histone Deacetylase Complex Attenuates cAMP/PKA Signaling to Regulate Morphogenesis and Virulence of Candida albicans

Denes Hnisz; Olivia Majer; Ingrid E. Frohner; Vukoslav Komnenovic; Karl Kuchler

Candida albicans, like other pleiomorphic fungal pathogens, is able to undergo a reversible transition between single yeast-like cells and multicellular filaments. This morphogenetic process has long been considered as a key fungal virulence factor. Here, we identify the evolutionarily conserved Set3/Hos2 histone deacetylase complex (Set3C) as a crucial repressor of the yeast-to-filament transition. Cells lacking core components of the Set3C are able to maintain all developmental phases, but are hypersusceptible to filamentation-inducing signals, because of a hyperactive cAMP/Protein Kinase A signaling pathway. Strikingly, Set3C-mediated control of filamentation is required for virulence in vivo, since set3Δ/Δ cells display strongly attenuated virulence in a mouse model of systemic infection. Importantly, the inhibition of histone deacetylase activity by trichostatin A exclusively phenocopies the absence of a functional Set3C, but not of any other histone deacetylase gene. Hence, our work supports a paradigm for manipulating morphogenesis in C. albicans through alternative antifungal therapeutic strategies.


PLOS Pathogens | 2014

Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes

Tobias Schwarzmüller; Biao Ma; Ekkehard Hiller; Fabian Istel; Michael Tscherner; Sascha Brunke; Lauren Ames; Arnaud Firon; Brian Green; Vitor Cabral; Marina Marcet-Houben; Ilse D. Jacobsen; Jessica Quintin; Katja Seider; Ingrid E. Frohner; Walter Glaser; Helmut Jungwirth; Sophie Bachellier-Bassi; Murielle Chauvel; Ute Zeidler; Dominique Ferrandon; Toni Gabaldón; Bernhard Hube; Christophe d'Enfert; Steffen Rupp; Brendan P. Cormack; Ken Haynes; Karl Kuchler

The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes.


Current Opinion in Microbiology | 2010

Fungal attacks on mammalian hosts: pathogen elimination requires sensing and tasting.

Christelle Bourgeois; Olivia Majer; Ingrid E. Frohner; Lanay Tierney; Karl Kuchler

Recognition of Candida spp. by immune cells is mediated by dedicated pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and lectins expressed on innate immune cells (e.g., macrophages, neutrophils and dendritic cells (DCs)). PRRs recognize Candida-specific pathogen-associated molecular patterns (PAMPs). Binding of fungal PAMPs (e.g., cell wall sugar polymers and proteins, fungal nucleic acids) to PRRs triggers the activation of innate effector cells. Recent findings underscore the role of DCs in relaying PAMP information through their PRRs to stimulate the adaptive response. In agreement, deficiencies in certain PRRs strongly impair survival to Candida infections in mice and is associated with enhanced susceptibility to mucocutaneous fungal infections in humans. Understanding the complex signaling networks protecting the host against fungal pathogens remains a challenge in the field.


Journal of Biological Chemistry | 2008

Weak Organic Acids Trigger Conformational Changes of the Yeast Transcription Factor War1 in Vivo to Elicit Stress Adaptation

Christa Gregori; Christoph Schüller; Ingrid E. Frohner; Gustav Ammerer; Karl Kuchler

The Saccharomyces cerevisiae zinc cluster regulator War1 mediates an essential transcriptional and adaptive response to weak organic acid stress. Here we investigate the mechanism of War1 activation upon weak acid stress. We identified several gain-of-function WAR1 alleles mapping to the central War1 region. These mutations constitutively increase levels of the plasma membrane ABC transporter Pdr12, the main War1 target mediating stress adaptation. Functional analysis of War1 reveals that the central region and its C-terminal activation domain are required for function. Notably, the native DNA-binding and dimerization domains appear dispensable for War1 activity, because they can be replaced by a LexA DNA-binding domain. Chromatin immunoprecipitation demonstrates elevated promoter affinity of activated War1, because its PDR12 promoter association increases upon stress. Hyperactive WAR1 alleles have constitutively high PDR12 promoter association. Furthermore, fluorescence resonance energy transfer of functional CFP-War1-YFP proteins also demonstrates conformational changes of stress-activated War1 in vivo. Our results suggest a mechanism whereby War1 activation is accompanied by conformational changes enhancing promoter association, thus initiating the adaptation process.


Nature Methods | 2012

M-Track: detecting short-lived protein-protein interactions in vivo

Aurora Zuzuarregui; Thomas Kupka; Bhumika Bhatt; Ilse Dohnal; Ingrid Mudrak; Christina Friedmann; Stefan Schüchner; Ingrid E. Frohner; Gustav Ammerer; Egon Ogris

We developed a protein-proximity assay in yeast based on fusing a histone lysine methyltransferase onto a bait and its substrate onto a prey. Upon binding, the prey is stably methylated and detected by methylation-specific antibodies. We applied this approach to detect varying interaction affinities among proteins in a mitogen-activated protein kinase pathway and to detect short-lived interactions between protein phosphatase 2A and its substrates that have so far escaped direct detection.


Eukaryotic Cell | 2011

Efg1 Controls Caspofungin-Induced Cell Aggregation of Candida albicans through the Adhesin Als1

Christa Gregori; Walter Glaser; Ingrid E. Frohner; Cristina Reinoso-Martín; Steffen Rupp; Christoph Schüller; Karl Kuchler

ABSTRACT Echinocandin drugs such as caspofungin (CASP), micafungin, and anidulafungin inhibit fungal cell wall biogenesis by blocking Fks1-mediated β-glucan deposition into the cell surface. Candins have become suitable drugs to treat life-threatening diseases caused by several fungal species, including Candida albicans, that are pathogenic for humans. Here, we present the discovery of a novel CASP-induced flocculation phenotype of C. albicans, which formed large cell aggregates in the presence of CASP. High concentrations of sugars such as mannose or glucose inhibit CASP-induced flocculation and improve survival of C. albicans cells exposed to CASP. Notably, exposure of C. albicans cells to CASP triggers Efg1-dependent expression of the adhesin ALS1 and induces invasive growth on agar plates. Indeed, cells lacking either Efg1 or Als1 show strongly diminished CASP-induced flocculation, and the absence of Efg1 leads to marked CASP hypersensitivity. On the other hand, CASP-induced invasive growth is enhanced in cells lacking Efg1. Hence, CASP stress drives an Efg1-dependent response, indicating that this multifunctional transcriptional regulator, which is otherwise involved in filamentation, white-to-opaque switching, and virulence, also modulates cell wall remodeling upon CASP challenge. Taken together, our data suggest that CASP-induced cell wall damage activates Efg1 in parallel with the known cell integrity stress signaling pathway to coordinate cell wall remodeling.


PLOS Pathogens | 2015

The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways

Michael Tscherner; Florian Zwolanek; Sabrina Jenull; Fritz J. Sedlazeck; Andriy Petryshyn; Ingrid E. Frohner; John Mavrianos; Neeraj Chauhan; Arndt von Haeseler; Karl Kuchler

Human fungal pathogens like Candida albicans respond to host immune surveillance by rapidly adapting their transcriptional programs. Chromatin assembly factors are involved in the regulation of stress genes by modulating the histone density at these loci. Here, we report a novel role for the chromatin assembly-associated histone acetyltransferase complex NuB4 in regulating oxidative stress resistance, antifungal drug tolerance and virulence in C. albicans. Strikingly, depletion of the NuB4 catalytic subunit, the histone acetyltransferase Hat1, markedly increases resistance to oxidative stress and tolerance to azole antifungals. Hydrogen peroxide resistance in cells lacking Hat1 results from higher induction rates of oxidative stress gene expression, accompanied by reduced histone density as well as subsequent increased RNA polymerase recruitment. Furthermore, hat1Δ/Δ cells, despite showing growth defects in vitro, display reduced susceptibility to reactive oxygen-mediated killing by innate immune cells. Thus, clearance from infected mice is delayed although cells lacking Hat1 are severely compromised in killing the host. Interestingly, increased oxidative stress resistance and azole tolerance are phenocopied by the loss of histone chaperone complexes CAF-1 and HIR, respectively, suggesting a central role for NuB4 in the delivery of histones destined for chromatin assembly via distinct pathways. Remarkably, the oxidative stress phenotype of hat1Δ/Δ cells is a species-specific trait only found in C. albicans and members of the CTG clade. The reduced azole susceptibility appears to be conserved in a wider range of fungi. Thus, our work demonstrates how highly conserved chromatin assembly pathways can acquire new functions in pathogenic fungi during coevolution with the host.


Methods of Molecular Biology | 2009

In Vitro Systems for Studying the Interaction of Fungal Pathogens with Primary Cells from the Mammalian Innate Immune System

Christelle Bourgeois; Olivia Majer; Ingrid E. Frohner; Karl Kuchler

The incidence of invasive fungal diseases has increased over the past decades, particularly in relation with the increase of immunocompromised patient cohorts (e.g., HIV-infected patients, transplant recipients, immunosuppressed patients with cancer). Opportunistic fungal pathogens such as Candida spp. are most often associated with serious systemic infections. Currently available antifungal drugs are rather unspecific, often with severe side effects. In some cases, their prophylactic use has favored emergence of resistant fungal strains. Major antifungal drugs target the biosynthesis of lipid components of the fungal plasma membrane or the assembly of the cell wall. For a more specific and efficient treatment and prevention of fungal infection, new therapeutic strategies are needed, including strengthening or stimulation of the residual host immune response. Achieving such a goal requires a better understanding of factors important for the defense and the survival of the host combating Candida spp. Where possible, primary cultures of mammalian immune cells of the innate immune system constitute a better suited model than transformed cell lines to study host-pathogen response and virulence. Hence, in vitro primary cell culture systems are a good strategy for a first screening of mutant strains of Candida spp. to identify virulence traits with regard to host cell response and pathogen invasion.

Collaboration


Dive into the Ingrid E. Frohner's collaboration.

Top Co-Authors

Avatar

Karl Kuchler

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Olivia Majer

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Glaser

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Christa Gregori

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gustav Ammerer

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathias Müller

University of Veterinary Medicine Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge