Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingrid Falnoga is active.

Publication


Featured researches published by Ingrid Falnoga.


Science of The Total Environment | 2003

Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China

Milena Horvat; Nataša Nolde; Vesna Fajon; Vesna Jereb; Martina Logar; Sonja Lojen; Radojko Jaćimović; Ingrid Falnoga; Qu Liya; Jadran Faganeli; Damjana Drobne

The province of Guizhou in Southwestern China is currently one of the worlds most important mercury production areas. Emissions of mercury from the province to the global atmosphere have been estimated to be approximately 12% of the world total anthropogenic emissions. The main objective of this study was to assess the level of contamination with Hg in two geographical areas of Guizhou province. Mercury pollution in the areas concerned originates from mercury mining and ore processing in the area of Wanshan, while in the area of Quingzhen mercury pollution originates from the chemical industry discharging Hg through wastewaters and emissions to the atmosphere due to coal burning for electricity production. The results of this study confirmed high contamination with Hg in soil, sediments and rice in the Hg mining area in Wanshan. High levels of Hg in soil and rice were also found in the vicinity of the chemical plant in Quingzhen. The concentrations of Hg decreased with distance from the main sources of pollution considerably. The general conclusion is that Hg contamination in Wanshan is geographically more widespread, due to deposition and scavenging of Hg from contaminated air and deposition on land. In Quingzhen Hg contamination of soil is very high close to the chemical plant but the levels reach background concentrations at a distance of several km. Even though the major source of Hg in both areas is inorganic Hg, it was observed that active transformation of inorganic Hg to organic Hg species (MeHg) takes place in water, sediments and soils. The concentration of Hg in rice grains can reach up to 569 microg/kg of total Hg of which 145 microg/kg was in MeHg form. The percentage of Hg as MeHg varied from 5 to 83%. The concentrations of selenium can reach up to 16 mg/kg in soil and up to 1 mg/g in rice. A correlation exists between the concentration of Se in soil and rice, indicating that a portion of Se is bioavailable to plants. No correlation between Hg and Se in rice was found. Exposure of the local population to Hg may occur due to inhalation of Hg present in air (in particular in Hg mining area) and consumption of Hg contaminated food (in particular rice and fish) and water. Comparison of intake through these different routes showed that the values of Hg considerably exceed the USA EPA Reference Concentration (RfC) for chronic Hg exposure (RfC is 0.0004 mg/m(3)) close to the emission sources. Intake of Hg through food consumption, particularly rice and fish, is also an important route of Hg exposure in study area. In general, it can be concluded that the population mostly at risk is located in the vicinity of smelting facilities, mining activities and close to the waste disposal sites in the wider area of Wanshan. In order to assess the real level of contamination in the local population, it is recommended that biomonitoring should be performed, including Hg and MeHg measurements in hair, blood and urine samples.


Journal of Trace Elements in Medicine and Biology | 2004

The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners

Alfred B. Kobal; Milena Horvat; Marija Prezelj; Alenka Briski; Mladen Krsnik; Tatjana Dizdarevič; Darja Mazej; Ingrid Falnoga; Vekoslava Stibilj; Niko Arnerič; Darja Kobal; Joško Osredkar

Limited information is available on the effects of chronic mercury exposure in relation to the risk of cardiovascular disease (CVD). It is known from in vitro and in vivo studies that Hg can promote lipid peroxidation through promotion of free radical generation, and interaction with antioxidative enzymes and reduction of bioavailable selenium. The objective of the study was to test the hypothesis that long-term past occupational exposure to elemental Hg (Hg0) can modify antioxidative capacity and promote lipid peroxidation in miners. The study population comprised 54 mercury miners and 58 workers as the control group. The miners were examined in the post-exposure period. We evaluated their previous exposure to Hg0, the putative appearance of certain nonspecific symptoms and signs of micromercurialism, as well as the main behavioural and biological risk factors for CVD, and determined: 1) Hg and Se levels in blood and urine, 2) antioxidative enzymes, Cu/Zn superoxide dismutase (CuZn-SOD), catalase (CAT), and selenoenzyme glutathione peroxidase (GSH-Px) activity in erythrocytes as indirect indices of free radical activity, 3) pineal hormone melatonin (MEL) in blood and urine, and 4) lipid hydroperoxides (LOOHs) and malondialdehyde (MDA) as lipid peroxidation products. The mercury miners were intermittently exposed to Hg0 for periods of 7 to 31 years. The total number of exposure periods varied from 13 to 119. The cumulative U-Hg peak level varied from 794-11,365 microg/L. The current blood and urine Hg concentrations were practically on the same level in miners and controls. Miners showed some neurotoxic and nephrotoxic sequels of micromercurialism. No significant differences in behavioural and biological risk factors for CVD were found between miners and controls. A weak correlation (r = 0.36, p < 0.01) between systolic blood pressure and average past exposure U-Hg level was found. The mean P-Se in miners (71.4 microg/L) was significantly lower (p < 0.05) than in the controls (77.3 microg/L), while the mean U-Se tended to be higher (p < 0.05) in miners (16.5 microg/g creatinine) than in the controls (14.0 microg/g creatinine). Among antioxidative enzyme activities, only CAT in erythrocytes was significantly higher (p < 0.01) in miners (3.14 MU/g Hb) than in the controls (2.65 MU/g Hb). The mean concentration of B-MEL in miners (44.3 ng/L) was significantly higher (p < 0.01) than in the controls (14.9 ng/L). The mean value of U-MEL sulphate (31.8 microg/L) in miners was significantly lower (p < 0.01) than in the control group (46.9 microg/L). Among the observed lipid peroxidative products, the mean concentration of U-MDA was statistically higher (p < 0.01) in miners (0.21 micromol/mmol creatinine) than in the controls (0.17 micromol/mmol creatinine). In the group of miners with high mercury accumulation and the presence of some nonspecific symptoms and signs of micromercurialism, the results of our study partly support the assumption that long-term occupational exposure to Hg0 enhances the formation of free radicals even several years after termination of occupational exposure. Therefore, long-term occupational exposure to Hg0 could be one of the risk factors for increased lipid peroxidation and increased mortality due to ischaemic heart disease (ICH) found among the mercury miners of the Idrija Mine.


Biological Trace Element Research | 2007

Selenium-mercury interactions in man and animals.

Ingrid Falnoga; Magda Tušek-Žnidarič

Selenium–mercury interactions were most extensively studied in relation to alleviation of Hg toxicity by added selenium. This presentation considers the influence of mercury on endogenous selenium, on its tissue and cellular “status” after lifelong or acute exposure to mercury vapor (Hgo). Discussed are data obtained from (1) humans living near or working in a mercury mine, and (2) rats experimentally exposed in the mine. Mercury vapor is unique—or similar to methylmercury—because of its ability to penetrate cell membranes and so invade all cells, where it is oxidized in the biologically active form (Hg++) by catalase. Such in situ-generated ions can react with endogenously generated highly reactive Se metabolites, like HSe−, and render a part of the selenium unavailable for selenoprotein synthesis. Data on human populations indicate that in moderate Hg exposure combined with an adequate selenium supply through diet, Se bioavailability can be preserved. On the other hand, the results of an acute exposure study emphasize the dual role of selenium in mercury detoxification. Besides the well-known Se coaccumulation through formation of nontoxic Hg–Se complexes, we observed noticeable Se (co)excretion, at least at the beginning of exposure. The higher Hg accumulation rate in the group of animals with lower basal selenium levels can also point to selenium involvement in mercury excretion. In such conditions there is a higher probability for decreased selenoprotein levels (synthesis) in some tissues or organs, depending on the synthesis hierarchy.


Environmental Research | 2009

Human exposure to mercury in the vicinity of chlor-alkali plant.

Darija Gibičar; Milena Horvat; Martina Logar; Vesna Fajon; Ingrid Falnoga; R Ferrara; Enrica Lanzillotta; Claudia Ceccarini; Barbara Mazzolai; Bruce Denby; Jozef M. Pacyna

The main objectives of our study were to estimate the impact of a mercury cell chlor-alkali (MCCA) complex in Rosignano Solvay (Tuscany, Italy) on the local environment and to assess mercury exposure of inhabitants living near the plant. Measurement campaigns of atmospheric Hg near the MCCA plant showed that the impact of the emitted Hg from the industry on the terrestrial environment is restricted to a close surrounding area. Total gaseous mercury concentrations in ambient air of inhabited area around the MCCA plant were in the range of 8.0-8.7 ng/m3 in summer and 2.8-4.2 ng/m3 in winter. Peaks of up to 100 ng/m3 were observed at particular meteorological conditions. Background levels of 2 ng/m3 were reached within a radius of 3 km from the plant. Reactive gaseous mercury emissions from the plant constituted around 4.2% of total gaseous mercury and total particulate mercury emission constituted around 1.0% of total gaseous mercury emitted. Analysis of local vegetables and soil samples showed relatively low concentrations of total mercury (30.1-2919 microgHg/kg DW in the soil; <0.05-111 microgHg/kg DW in vegetables) and methylmercury (0.02-3.88 microgHg/kg DW in the soil; 0.03-1.18 microgHg/kg DW in vegetables). Locally caught marine fish and fresh marine fish from the local market had concentrations of total Hg from 0.049 to 2.48 microgHg/g FW, of which 37-100% were in the form of methylmercury. 19% of analysed fish exceeded 1.0 microgHg/g FW level, which is a limit set by the European Union law on Hg concentrations in edible marine species for tuna, swordfish and shark, while 39% of analysed fish exceeded the limit of 0.5 microgHg/g FW set for all other edible marine species. Risk assessment performed by calculating ratio of probable daily intake (PDI) and provisional tolerable daily intake (PTDI) for mercury species for various exposure pathways showed no risks to human health for elemental and inorganic mercury, except for some individuals with higher number of amalgam fillings, while PDI/PTDI ratio for methylmercury and total mercury exceeded the toxicologically tolerable value due to the potential consumption of contaminated marine fish.


Biological Trace Element Research | 2000

Preliminary study on the determination of selenium compounds in some selenium-accumulating mushrooms

Zdenka Šlejkovec; Johannes T. van Elteren; Urszula D. Woroniecka; Koos J. Kroon; Ingrid Falnoga; A. R. Byrne

Using various chromatographic techniques (size exclusion, anion exchange, and cation exchange) combined with several detectors (neutron activation analysis and atomic fluorescence spectrometry), an attempt was made to characterize selenium compounds in some edible, selenium-accumulating mushrooms (Albatrellus pes-caprae and Boletus edulis).The mushrooms contained mostly low-molecular-weight (6 kDa) selenium compounds. After proteolysis, only a small fraction of the extractable selenium could be identified as selenite (3.0–9.2%, Albatrellus pes-caprae), selenocystine (minor, Albatrellus pes-caprae; 7.5%, Boletus edulis), or selenomethionine (1.0%, Boletus edulis), leaving the form of the bulk still to be elucidated.


Biological Trace Element Research | 1993

Interactions of mercury in rat brain

Ingrid Falnoga; I. Kregar; M. Škreblin; Magda Tušek-Žnidarič; P. Stegnar

In order to study the metabolism of mercury (Hg), its affinity to metallothionein (MT), and its influence on levels of the essential metals copper and zinc in the brain tissue of rats exposed to elemental mercury (HgO) vapor was investigated. The major findings were:1.After long-term exposure, about 40% of mercury was found in the brain water-soluble phase (supernatant);2.In brain supernatant, about 80% of Hg was found in the range of low-molecular-weight proteins; the MT-like protein Hg−Cu−Zn-thionein was isolated and partially characterized;3.HgO vapor exposure resulted in increased tissue levels of essential Cu and Zn in addition to exogenous Hg; and4.Experiments showed that HgO vapor exposure can induce the stimulation of rat brain MT synthesis.


Environmental Toxicology and Chemistry | 2012

CELL MEMBRANE INTEGRITY AND INTERNALIZATION OF INGESTED TiO2 NANOPARTICLES BY DIGESTIVE GLAND CELLS OF A TERRESTRIAL ISOPOD

Sara Novak; Damjana Drobne; Janez Valant; Živa Pipan-Tkalec; Primož Pelicon; Primož Vavpetič; Nataša Grlj; Ingrid Falnoga; Darja Mazej; Maja Remskar

The present study was motivated by the paucity of reports on cellular internalization of ingested titanium dioxide (TiO(2)) nanoparticles (nano-TiO(2)). The model invertebrate (Porcellio scaber, Isopoda, Crustacea) was exposed to food dosed with nano-TiO(2) containing 100, 1,000, 3,000, or 5,000 µg nano-TiO(2) per gram of food. After 14 d of exposure, the amount of Ti in the entire body was analyzed by inductively coupled plasma-mass spectrometry, and elemental analyses of tissue cross sections were performed by particle induced X-ray emission. In addition, a series of toxicological markers including feeding parameters, weight change, and survival, as well as cytotoxic effects such as digestive gland cell membrane stability, were monitored. Internalization of ingested nano-TiO(2) by the isopods digestive gland epithelial cells was shown to depend on cell membrane integrity. Cell membranes were found to be destabilized by TiO(2) particles, and at higher extracellular concentrations of nano-TiO(2), the nanoparticles were internalized.


Journal of Pharmaceutical and Biomedical Analysis | 2000

Use of nitric acid in sample pretreatment for determination of trace elements in various biological samples by ETAAS

Janez Ščančar; Radmila Milačič; Ingrid Falnoga; Maja Čemažar; Peter Bukovec

Trace elements in liquid biological samples may be determined by direct electrothermal atomic absorption spectrometry (ETAAS). In our previous work it was found that samples containing proteins or DNA may leak out of the graphite tube before the drying step, despite the addition of various modifiers. In order to keep the sample to the graphite tube, samples were diluted before analysis 1 + 1 with 32% v/v nitric acid, or 5 microl of 32% v/v nitric acid was added to the graphite tube before ETAAS determination. Applying the proposed procedure, the concentrations of lead in eluted fractions after gel chromatographic separation of human cerebellar nucleus dentatus supernatant and platinum in isolated DNA samples were determined. The use of nitric acid in sample pretreatment prevent sample leakage out of the graphite tube, provided for even drying and considerably reduced nonspecific absorption in lead determination. The repeatability of measurements was better than + 6%. The accuracy of the procedure was checked by spiking samples. The recoveries for both elements lay between 93--104%. Nitric acid was found to be a better modifier than TRITON X-100.


Biological Trace Element Research | 2000

Effect of arsenic trioxide on metallothionein and its conversion to different arsenic metabolites in hen liver.

Ingrid Falnoga; Vekoslava Stibilj; Majda Tušek-Žnidarič; Zdenka Šlejkovec; Darja Mazej; Radojko Jaćimović; Janez Ščančar

The metabolism of arsenic, its affinity to metallothionein (MT), its influence on selenium levels, and its biotransformation to different metabolites in the liver tissue of laying hens exposed to arsenic trioxide (As2O3) was investigated. The experiment was performed with two groups of hens fed for 19 d with either a standard diet or with the same diet enriched in arsenic (30 µg/g). The major findings were as follows:1.After 19 d exposure, about 65% of the total liver As was found in the water-soluble phase (100,000g centrifuged supernatant). In liver supernatant, As binding was found mostly in the range of very low-molecular-weight proteins (Mr<10,000). Although after exposure the amount of MT-like proteins increased, the As bound to it was only in trace amounts. The protein was identified by convential procedures as Zn,Cu-thionein with traces of selenium and arsenic.2.Arsenic exposure resulted in almost unchanged Se levels regarding its tissue concentrations and distribution between supernatant and pellet, where about 10% of total Se was found in the supernatant. On the contrary, As exposure did affect Cd levels. Tissue Cd concentration was slightly diminished, but the percentage of tissue Cd found in the water-soluble phase was increased from 20% to 40%.3.In methanol extracts of tissue and supernatant of the As-exposed group, only two arsenic compounds were detected, As(III) and dimethylarsinic acid (DMA), the latter prevailing.


Biological Trace Element Research | 2005

Metallothionein-like proteins and zinc--copper interaction in the hindgut of Porcellio scaber (Crustacea: Isopoda) exposed to zinc.

Znidarsic N; Tusek-Znidaric M; Ingrid Falnoga; Scancar J; Strus J

Metallothioneins (MTs) are ubiquitous low-molecular-weight metalbinding proteins, with a variety of functions in metal metabolism ascribed to them. Among terrestrial invertebrates, MTs have been studied in nematodes, insects, snails, and earthworms. The aim of this study was the characterization of MT-like proteins in the terrestrial isopod crustacean Porcellio scaber in order to analyze their probable role in the metaboliss of copper (Cu) and zinc (Zn). Dietary Zn supplementation (793 μg Zn/g dry food, 6 d) was applied to stimulate MT synthesis. After separation of the hindgut postmicrosomic supernatant (cytosol) of Zn-exposed animals by gel filtration on a Sephadex G-75 column, a Cu- and Zn-containing peak was detected in the position of Vc/Vo≈2, where MTs are expected to elute. Rechromatography of these fractions by size-exclusion chromatography-high-performance liquid chromatography revealed that the 215-nm absorbance peak coincided with the absorbance peak of the rabbit MT II standard. These low-molecular-weight Cu- and Zn-binding compounds, detected in the cytosol of the hindgut cells in Zn-exposed P. scaber. are considered to be Cu, Zn-MT-like proteins. To our knowledge, this is the first report on the characterization of MT-like proteins in isopod crustaceans. These results also indicate that both Zn and Cu dynamics in P. scaber hindgut are affected at the given dietary Zn supplementation and that MT-like proteins are involved in this Zn-Cu interaction.

Collaboration


Dive into the Ingrid Falnoga's collaboration.

Top Co-Authors

Avatar

Milena Horvat

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janja Marc

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes T. van Elteren

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Milena Horvat

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge